Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-ocean carbon sinks

06.09.2013
Study involves basic research on dark ocean microorganisms

Although microbes that live in the so-called “dark ocean”—below a depth of some 600 feet where light doesn’t penetrate—may not absorb enough carbon to curtail global warming, they do absorb considerable amounts of carbon and merit further study.


While most people are familiar with microbes that occur above ground—such as this orange-colored colony surrounding Grand Prismatic Spring at Yellowstone National Park—microbes also occur around hydrothermal vents on the ocean floor, at depths where light cannot penetrate and where they trap carbon using chemical energy instead of sunlight. Photo by Jim Peaco, National Park Service, via Wikimedia Commons.

That is one of the findings of a paper published in the International Society of Microbial Ecology (ISME) Journal by Tim Mattes, associate professor of civil and environmental engineering in the University of Iowa College of Engineering, and his colleagues.

Mattes says that while many people are familiar with the concept of trees and grass absorbing carbon from the air, bacteria, and ancient single-celled organisms called “archaea” in the dark ocean hold between 300 million and 1.3 billion tons of carbon.

“A significant amount of carbon fixation occurs in the dark ocean,” says Mattes. “What might make this surprising is that carbon fixation is typically linked to organisms using sunlight as the energy source.”

Organisms in the dark ocean may not require sunlight to lock up carbon, but they do require an energy source.

“In the dark ocean, carbon fixation can occur with reduced chemical energy sources such as sulfur, methane, and ferrous iron,” Mattes says. “The hotspots are hydrothermal vents that generate plumes rich in chemical energy sources that stimulate the growth of microorganisms forming the foundation for deep sea ecosystems.”

The hydrothermal vents the team studied are located in a volcanic caldera at Axial Seamount, an active underwater volcano in the Pacific Ocean. The site is located some 300 miles west of Cannon Beach, Ore., and about 1,500 meters beneath the surface. Mattes’ colleague, Robert Morris, gathered data and collected samples used in the study during a 2011 cruise sponsored by the U.S. National Science Foundation.

“Using protein-based techniques, we observed that sulfur-oxidizing microorganisms were numerically dominant in this particular hydrothermal vent plume and also converting carbon dioxide to biomass, as suggested by the title of our paper: ‘Sulfur oxidizers dominate carbon fixation at a biogeochemical hot spot in the dark ocean.’”

With carbon fixation occurring on a large scale in the dark ocean, one might wonder about the contribution of such activity to offset carbon emissions widely believed to contribute to global warming, but Mattes sets aside any such speculation in favor of further study.

“While it is true that these microbes are incorporating carbon dioxide into their cells in the deep ocean and thus having an impact on the global carbon cycle, there is no evidence to suggest that they could play any role in mitigating global warming,” he says.

He adds that the primary value of the investigation is to better understand how microorganisms function in the dark ocean and to increase fundamental knowledge of global biogeochemical cycles.

Mattes conducted this research at the University of Washington School of Oceanography while on developmental leave from the UI.

Mattes’ colleagues in the study are: Brook Nunn, Katharine Marshall, Giora Proskurowski, Deborah Kelley, Orest Kawka, and Robert Morris of the University of Washington; David Goodlett of the University of Maryland; and Dennis Hansell of the University of Miami.

The study, published online in July, was funded under grants from the National Science Foundation OCE-1232840 and OCE-0825790 and National Institutes of Health 5P30ES007033-12 and 1S10RR023044.

Contacts
Gary Galluzzo, University Communication and Marketing, 319-384-0009
Tim Mattes, Civil and Environmental Engineering, 319-335-5065

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>