Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep earth recycling of the oceanic floor

23.05.2014

New insight into the temperature of deep Earth

Scientists from the Magma and Volcanoes Laboratory (CNRS/IRD/Université Blaise Pascal) and the European Synchrotron, the ESRF, have recreated the extreme conditions 600 to 2900 km below the Earth's surface to investigate the melting of basalt in the oceanic tectonic plates.

They exposed microscopic pieces of rock to these extreme pressures and temperatures while simultaneously studying their structure with the ESRF's extremely powerful X-ray beam. The results show that basalt produced on the ocean floor has a melting temperature lower than the peridotite which forms the Earth's mantle.

Near the core-mantle boundary, where the temperature rises rapidly, the melting basalt produces liquids rich in silica (SiO2), which react rapidly with the mantle and indicate a speedy dissolution of the basalt back into the depths of the Earth.

These experiments provide a new explanation for seismic anomalies at the base of the mantle while fixing its temperature in the region of 4000 K. The results are published in Science on the 23 May 2014.

The Earth is an active planet. The heat it contains is capable of inducing the mantle convection responsible for plate tectonics. This energy comes from the heat accumulated during the formation of our planet, the latent heat of crystallization of the inner core, and radioactive decay. The temperatures inside the Earth, however, are not well known.

Convection causes hot material to rise to the surface of the Earth and cold material to sink towards the core. Thus, when the ascending mantle begins to melt at the base of the oceanic ridges, the basalt flows along the surface to form what we call the oceanic crust. "Over the course of millennia the crust will then undergo subduction, its greater density causing it to sink into the mantle. This is why the Earth's continents are known to be several billion years old, while the oldest oceanic crust only dates back 165 million years" said Mohamed Mezouar, scientist at the ESRF.

The temperature at the core-mantle boundary (also known as the D" region) is thought to increase by more than 1000 degrees over a few hundred kilometers, which is significant compared to the temperature gradient across the rest of the mantle. Previous authors have suggested that this temperature rise could cause the partial melting of the mantle, but this hypothesis leaves a number of geophysical observations unexplained. Firstly, the anomalies in the propagation speed of seismic waves do not match those expected for a partial melting of the mantle, and secondly, the melting mantle should lead to the production of liquid pockets in the lowermost mantle, a phenomenon which has never been observed.

The team led by Professor Denis Andrault from the Université Blaise Pascal decided instead to study the melting point of basalt at high depths, and found that it was significantly lower than that of the mantle. The melting of sub-oceanic basalt piles could therefore be responsible for the previously unexplained seismic anomalies. The researchers also showed that the melting basalt generates a liquid rich in SiO2.

As the mantle itself contains large quantities of MgO, the interaction of these liquids with the mantle is expected to produce a rapid reaction leading to the formation of the solid MgSiO3 perovskite. This would explain why no liquid pockets have been detected by seismologists in the deep mantle: any streams of liquid should rapidly re-solidify.

If it is indeed the basalt and not the mantle whose melting in the D"-region is responsible for the observed seismic anomalies, then the temperature at the core-mantle boundary must be between 3800 and 4150 Kelvin, between the melting points of basalt and the Earth's mantle. If this hypothesis is correct, this would be the most accurate determination of the temperature at the core-mantle boundary available today.

"It could solve a long time controversy about the peculiar role of the core-mantle boundary in the dynamical properties of the Earth mantle, said Professor Denis Andrault. ''We know now that the cycle of crust formation at the mid-ocean ridges and crust dissolution in the lowermost mantle may have occured since plate tectonics were active on our planet'', he added.

###

Contacts

Researchers

Denis ANDRAULT, Laboratoire Magmas et Volcans, Université Blaise Pascal
+33.4.73.34.67.81
d.andrault@opgc.univ-bpclermont.fr

Mohamed MEZOUAR, European Synchrotron Radiation Facility
+33.4.76.88.25.15
mezouar@esrf.fr

Press

Christiane GRAPPIN, Institut National des Sciences de l'Univers, CNRS
+33.1.44.96.43.37
christiane.grappin@cnrs.fr

Lucy STONE, European Synchrotron Radiation Facility
+33.4.76.88.20.87 lucy.stone@esrf.fr

Denis Andrault | Eurek Alert!
Further information:
http://www.esrf.fr

More articles from Earth Sciences:

nachricht Ocean acidification makes coralline algae less robust
08.02.2016 | University of Bristol

nachricht In the Southern Ocean, a carbon-dioxide mystery comes clear
04.02.2016 | The Earth Institute at Columbia University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

Ocean acidification makes coralline algae less robust

08.02.2016 | Earth Sciences

Online shopping might not be as green as we thought

08.02.2016 | Studies and Analyses

Proteomics and precision medicine

08.02.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>