Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Deep creep means milder, more frequent earthquakes along Southern California's San Jacinto fault

With an average of four mini-earthquakes per day, Southern California's San Jacinto fault constantly adjusts to make it a less likely candidate for a major earthquake than its quiet neighbor to the east, the Southern San Andreas fault, according to an article in the journal Nature Geoscience.

"Those minor to moderate events along the San Jacinto fault relieve some of the stress built by the constantly moving tectonic plates," said Shimon Wdowinski, research associate professor at the University of Miami's Rosenstiel School of Marine and Atmospheric Science.

Previous estimates may have overstated the likelihood of a major event on the 140-mile long San Jacinto fault, which begins between Palm Springs and Los Angeles and runs south toward the Salton Sea east of San Diego. The US Geological Survey (USGS) is forecasting a 31 percent chance that an earthquake with a magnitude of 6.7 or higher on the Richter Scale will occur on the San Jacinto fault in the next 30 years. Only the San Andreas fault, with a 59 percent chance, is more likely to have a major event during the same period.

"Thirty-one percent is a high probability, when it comes to earthquake forecasting—the second highest in Southern California," said Wdowinski. "Our data show that the next significant event for the San Jacinto fault would probably be between 6.0 and 6.7. It doesn't sound like much, but in earthquake terms it is the difference between a major earthquake and a moderate event."

A magnitude 6.0 earthquake may be felt for dozens of miles from the epicenter, but building damage especially in California, due to strict building codes, would be minimal. As the magnitude approaches and passes 7.0, which is ten times stronger than an earthquake with a magnitude of 6.0, more serious property damage and loss of life may occur.

Wdowinski feels that the San Jacinto fault is not as dangerous as predicted, because "deep creep" releases elastic strain of the moving plates approximately six to ten miles beneath the surface. As a result, the accumulation of strain along the fault occurs in the upper six miles of crust, which may be released by more frequent, moderate earthquakes. However a major event can still occur on the San Jacinto fault, but with lower probability, if two segments of the fault rupture simultaneously.

By contrast, the more famous Southern San Andreas fault to the east is locked some 10 miles down, throughout the entire seizmogenic crust. It has had very few earthquakes to release that strain but promises to release much more energy—a major earthquake—when a rupture occurs.

"It's like bending a stick," said Wdowinski. "You can bend it until it breaks and releases the energy. The San Jacinto fault [on the left in the figure below] is like a stick that has a cut in it. When you begin bending it and it breaks, less energy is released. Deep creep—evidenced by those small, more frequent earthquakes—in effect forms that small cut that reduces the release of energy when the rupture finally occurs. We are less likely to have the big energy release of a major earthquake because the energy is not allowed to build up."

The Southern San Andreas fault to the east is like a thicker stick without any stress-relieving cuts, which will snap with much greater force. USGS predicts that the San Andreas fault has a 59 percent chance of a major earthquake (greater than a magnitude of 6.7) in the next 30 years.

Aside from earthquakes, Wdowinski's primary research interest at the University of Miami is hydrology and water flow in wetlands and the Florida Everglades, in particular. The link between desert earthquakes and swamps is geodesy, the study of the earth's size, shape, orientation, gravitational field, and their variations over time. He uses satellite imaging and the Global Positioning System (GPS) to measure those slight changes.

"These are the new tools of geodesy," said Wdowinski, who co-authored a May 2009 paper in the journal Eos, Transactions, a publication of the American Geophysical Union. The article highlighted "Geodesy in the 21st Century", a look at how technological advances are benefiting the field and are applicable to many important societal issues, such as climate change, natural hazards, and water resources.

After completing his doctoral degree at Harvard, Wdowinski completed a post-doctoral fellowship at Scripps Oceanographic Institute in Southern California, where he studied the San Jacinto fault. A native of Israel, Wdowinski joined the Rosenstiel School faculty in 2005.

About the University of Miami's Rosenstiel School

The University of Miami is the largest private research institution in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life.

Barbra Gonzalez | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>