Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep creep means milder, more frequent earthquakes along Southern California's San Jacinto fault

10.11.2009
With an average of four mini-earthquakes per day, Southern California's San Jacinto fault constantly adjusts to make it a less likely candidate for a major earthquake than its quiet neighbor to the east, the Southern San Andreas fault, according to an article in the journal Nature Geoscience.

"Those minor to moderate events along the San Jacinto fault relieve some of the stress built by the constantly moving tectonic plates," said Shimon Wdowinski, research associate professor at the University of Miami's Rosenstiel School of Marine and Atmospheric Science.

Previous estimates may have overstated the likelihood of a major event on the 140-mile long San Jacinto fault, which begins between Palm Springs and Los Angeles and runs south toward the Salton Sea east of San Diego. The US Geological Survey (USGS) is forecasting a 31 percent chance that an earthquake with a magnitude of 6.7 or higher on the Richter Scale will occur on the San Jacinto fault in the next 30 years. Only the San Andreas fault, with a 59 percent chance, is more likely to have a major event during the same period.

"Thirty-one percent is a high probability, when it comes to earthquake forecasting—the second highest in Southern California," said Wdowinski. "Our data show that the next significant event for the San Jacinto fault would probably be between 6.0 and 6.7. It doesn't sound like much, but in earthquake terms it is the difference between a major earthquake and a moderate event."

A magnitude 6.0 earthquake may be felt for dozens of miles from the epicenter, but building damage especially in California, due to strict building codes, would be minimal. As the magnitude approaches and passes 7.0, which is ten times stronger than an earthquake with a magnitude of 6.0, more serious property damage and loss of life may occur.

Wdowinski feels that the San Jacinto fault is not as dangerous as predicted, because "deep creep" releases elastic strain of the moving plates approximately six to ten miles beneath the surface. As a result, the accumulation of strain along the fault occurs in the upper six miles of crust, which may be released by more frequent, moderate earthquakes. However a major event can still occur on the San Jacinto fault, but with lower probability, if two segments of the fault rupture simultaneously.

By contrast, the more famous Southern San Andreas fault to the east is locked some 10 miles down, throughout the entire seizmogenic crust. It has had very few earthquakes to release that strain but promises to release much more energy—a major earthquake—when a rupture occurs.

"It's like bending a stick," said Wdowinski. "You can bend it until it breaks and releases the energy. The San Jacinto fault [on the left in the figure below] is like a stick that has a cut in it. When you begin bending it and it breaks, less energy is released. Deep creep—evidenced by those small, more frequent earthquakes—in effect forms that small cut that reduces the release of energy when the rupture finally occurs. We are less likely to have the big energy release of a major earthquake because the energy is not allowed to build up."

The Southern San Andreas fault to the east is like a thicker stick without any stress-relieving cuts, which will snap with much greater force. USGS predicts that the San Andreas fault has a 59 percent chance of a major earthquake (greater than a magnitude of 6.7) in the next 30 years.

Aside from earthquakes, Wdowinski's primary research interest at the University of Miami is hydrology and water flow in wetlands and the Florida Everglades, in particular. The link between desert earthquakes and swamps is geodesy, the study of the earth's size, shape, orientation, gravitational field, and their variations over time. He uses satellite imaging and the Global Positioning System (GPS) to measure those slight changes.

"These are the new tools of geodesy," said Wdowinski, who co-authored a May 2009 paper in the journal Eos, Transactions, a publication of the American Geophysical Union. The article highlighted "Geodesy in the 21st Century", a look at how technological advances are benefiting the field and are applicable to many important societal issues, such as climate change, natural hazards, and water resources.

After completing his doctoral degree at Harvard, Wdowinski completed a post-doctoral fellowship at Scripps Oceanographic Institute in Southern California, where he studied the San Jacinto fault. A native of Israel, Wdowinski joined the Rosenstiel School faculty in 2005.

About the University of Miami's Rosenstiel School

The University of Miami is the largest private research institution in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>