Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep creep means milder, more frequent earthquakes along Southern California's San Jacinto fault

10.11.2009
With an average of four mini-earthquakes per day, Southern California's San Jacinto fault constantly adjusts to make it a less likely candidate for a major earthquake than its quiet neighbor to the east, the Southern San Andreas fault, according to an article in the journal Nature Geoscience.

"Those minor to moderate events along the San Jacinto fault relieve some of the stress built by the constantly moving tectonic plates," said Shimon Wdowinski, research associate professor at the University of Miami's Rosenstiel School of Marine and Atmospheric Science.

Previous estimates may have overstated the likelihood of a major event on the 140-mile long San Jacinto fault, which begins between Palm Springs and Los Angeles and runs south toward the Salton Sea east of San Diego. The US Geological Survey (USGS) is forecasting a 31 percent chance that an earthquake with a magnitude of 6.7 or higher on the Richter Scale will occur on the San Jacinto fault in the next 30 years. Only the San Andreas fault, with a 59 percent chance, is more likely to have a major event during the same period.

"Thirty-one percent is a high probability, when it comes to earthquake forecasting—the second highest in Southern California," said Wdowinski. "Our data show that the next significant event for the San Jacinto fault would probably be between 6.0 and 6.7. It doesn't sound like much, but in earthquake terms it is the difference between a major earthquake and a moderate event."

A magnitude 6.0 earthquake may be felt for dozens of miles from the epicenter, but building damage especially in California, due to strict building codes, would be minimal. As the magnitude approaches and passes 7.0, which is ten times stronger than an earthquake with a magnitude of 6.0, more serious property damage and loss of life may occur.

Wdowinski feels that the San Jacinto fault is not as dangerous as predicted, because "deep creep" releases elastic strain of the moving plates approximately six to ten miles beneath the surface. As a result, the accumulation of strain along the fault occurs in the upper six miles of crust, which may be released by more frequent, moderate earthquakes. However a major event can still occur on the San Jacinto fault, but with lower probability, if two segments of the fault rupture simultaneously.

By contrast, the more famous Southern San Andreas fault to the east is locked some 10 miles down, throughout the entire seizmogenic crust. It has had very few earthquakes to release that strain but promises to release much more energy—a major earthquake—when a rupture occurs.

"It's like bending a stick," said Wdowinski. "You can bend it until it breaks and releases the energy. The San Jacinto fault [on the left in the figure below] is like a stick that has a cut in it. When you begin bending it and it breaks, less energy is released. Deep creep—evidenced by those small, more frequent earthquakes—in effect forms that small cut that reduces the release of energy when the rupture finally occurs. We are less likely to have the big energy release of a major earthquake because the energy is not allowed to build up."

The Southern San Andreas fault to the east is like a thicker stick without any stress-relieving cuts, which will snap with much greater force. USGS predicts that the San Andreas fault has a 59 percent chance of a major earthquake (greater than a magnitude of 6.7) in the next 30 years.

Aside from earthquakes, Wdowinski's primary research interest at the University of Miami is hydrology and water flow in wetlands and the Florida Everglades, in particular. The link between desert earthquakes and swamps is geodesy, the study of the earth's size, shape, orientation, gravitational field, and their variations over time. He uses satellite imaging and the Global Positioning System (GPS) to measure those slight changes.

"These are the new tools of geodesy," said Wdowinski, who co-authored a May 2009 paper in the journal Eos, Transactions, a publication of the American Geophysical Union. The article highlighted "Geodesy in the 21st Century", a look at how technological advances are benefiting the field and are applicable to many important societal issues, such as climate change, natural hazards, and water resources.

After completing his doctoral degree at Harvard, Wdowinski completed a post-doctoral fellowship at Scripps Oceanographic Institute in Southern California, where he studied the San Jacinto fault. A native of Israel, Wdowinski joined the Rosenstiel School faculty in 2005.

About the University of Miami's Rosenstiel School

The University of Miami is the largest private research institution in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>