Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recommend this page:
To (Recipient's email address)
Your name (Optional)
From (Your email address)
Message (Optional)
Datenschutz-Hinweis: Die Mailadressen werden von uns weder gespeichert noch an Dritte weitergegeben. Sie werden ausschließlich zu Übertragungszwecken verwendet.

Decomposing logs show local factors undervalued in climate change predictions

03.06.2014

A new Yale-led study challenges the long-held assumption that climate is the primary driver of how quickly organic matter decomposes in different regions, a key piece of information used in formulating climate models.

In a long-term analysis conducted across several sites in the eastern United States, a team of researchers found that local factors — from levels of fungal colonization to the specific physical locations of the wood — play a far greater role than climate in wood decomposition rates and the subsequent impacts on regional carbon cycling.


Researchers distributed 160 blocks of pine tree wood across five sub-regions of temperate forest in the eastern United States to determine the affect of local factors on carbon cycling.

Because decomposition of organic matter strongly influences the storage of carbon, or its release into the atmosphere, it is a major factor in potential changes to the climate.

The findings underscore a key limitation of using aggregated data across wide geographic areas to predict future climate change, said Mark A. Bradford, an assistant professor of terrestrial ecosystem ecology at the Yale School of Forestry & Environmental Studies (F&ES) and lead author of the study published in the journal Nature Climate Change.

They also suggest that better identifying and measuring such hyper-local ecological factors could significantly improve the effectiveness of climate change projections, he adds.

“We’re reaching the wrong conclusion about the major controls on decomposition because of the way we’ve traditionally collected and looked at our data,” Bradford said. “That in turn will weaken the effectiveness of climate prediction.”

It has long been thought that climate is the predominant factor controlling decomposition, mainly because warmer temperatures increase the activity levels of the “decomposer” organisms, such as microbes, that break down dead organic matter.

While scientific studies have revealed the critical importance of climate and temperature in determining decomposition rates across regional and global scales, the findings are often based on the mean response of decomposition across large areas.

According to Bradford, the use of mean responses can mask the local-scale information, such as the abundance of soil fungi and animals, which may be more important in governing the release of terrestrial carbon.

To better assess the importance of those local effects, the researchers distributed 160 blocks of pine tree wood across five sub-regions of temperate forest in the eastern United States — from Connecticut to northern Florida — and then monitored the decay that occurred over 13 months.

They selected similar forest types in order to focus on major differences in the effect of climate across the regional gradient. (The average annual temperature in southern New England is about 11 degrees Celsius cooler than Florida.) But within each of the five sub-regions they placed the wood blocks in different types of terrain to evaluate the effects of local versus regional factors on decomposition and capture the variability found in forest environments.

“Most people would try to make sure everything was as standard as possible,” Bradford said. “We said, ‘Well, let’s generate as much variation as possible.’ So we put some blocks on south-facing slopes, where they would be warmer in the summer, and others on north-facing slopes where it’s colder. We put some on top of ridges and others next to streams where it was wetter.”

After 13 months, they measured how much carbon had been lost, whether absorbed by the microbes growing on the wood or directly into the atmosphere as carbon dioxide.

According to their analysis, local-scale factors explained about three-quarters of the variation in wood decomposition, while climate explained only about one-quarter, contrary to the expectation that climate should be the predominant control.

Since those local factors likely are the primary drivers of decomposition rates, Bradford said, they should be better documented and integrated into climate models.

“The [climate] modelers know that they can only produce models based on the data sets that we give them,” he said. “So the message for field ecologists like me is to go out and get much richer data sets with much more information. We shouldn’t aggregate away information. We should make measurements at those local scales to capture all of the importance processes that affect ecosystem functioning.

“Then the modelers will have far richer data sets to test their models against and see if they work,” he adds.

The study was a collaboration among researchers from Yale; State University of New York-Buffalo; the Institute of Microbiology, Academy of Sciences of the Czech Republic; the U.S. National Center for Atmospheric Research; Columbia University; and the University of Central Florida.

Co-authors of the study, “Climate fails to predict wood decomposition at regional scales,” include Thomas W. Crowther, Daniel S. Maynard, and Emily E. Oldfield of the Yale School of Forestry & Environmental Studies.

The research was funded by the National Science Foundation’s Division of Environmental Biology and the Yale Climate & Energy Institute.

To read the complete article, visit: http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate2251.html

Kevin Dennehy | Eurek Alert!
Further information:
http://www.yale.edu

Further reports about: Environmental Forestry blocks decomposition ecosystem effects microbes terrestrial

More articles from Earth Sciences:

nachricht New Link Between Ocean Microbes and Atmosphere Uncovered
22.05.2015 | University of California, San Diego

nachricht Scientists tackle mystery of thunderstorms that strike at night
21.05.2015 | National Center for Atmospheric Research/University Corporation for Atmospheric Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>