Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recommend this page:
To (Recipient's email address)
Your name (Optional)
From (Your email address)
Message (Optional)
Datenschutz-Hinweis: Die Mailadressen werden von uns weder gespeichert noch an Dritte weitergegeben. Sie werden ausschließlich zu Übertragungszwecken verwendet.

Decomposing logs show local factors undervalued in climate change predictions

03.06.2014

A new Yale-led study challenges the long-held assumption that climate is the primary driver of how quickly organic matter decomposes in different regions, a key piece of information used in formulating climate models.

In a long-term analysis conducted across several sites in the eastern United States, a team of researchers found that local factors — from levels of fungal colonization to the specific physical locations of the wood — play a far greater role than climate in wood decomposition rates and the subsequent impacts on regional carbon cycling.


Researchers distributed 160 blocks of pine tree wood across five sub-regions of temperate forest in the eastern United States to determine the affect of local factors on carbon cycling.

Because decomposition of organic matter strongly influences the storage of carbon, or its release into the atmosphere, it is a major factor in potential changes to the climate.

The findings underscore a key limitation of using aggregated data across wide geographic areas to predict future climate change, said Mark A. Bradford, an assistant professor of terrestrial ecosystem ecology at the Yale School of Forestry & Environmental Studies (F&ES) and lead author of the study published in the journal Nature Climate Change.

They also suggest that better identifying and measuring such hyper-local ecological factors could significantly improve the effectiveness of climate change projections, he adds.

“We’re reaching the wrong conclusion about the major controls on decomposition because of the way we’ve traditionally collected and looked at our data,” Bradford said. “That in turn will weaken the effectiveness of climate prediction.”

It has long been thought that climate is the predominant factor controlling decomposition, mainly because warmer temperatures increase the activity levels of the “decomposer” organisms, such as microbes, that break down dead organic matter.

While scientific studies have revealed the critical importance of climate and temperature in determining decomposition rates across regional and global scales, the findings are often based on the mean response of decomposition across large areas.

According to Bradford, the use of mean responses can mask the local-scale information, such as the abundance of soil fungi and animals, which may be more important in governing the release of terrestrial carbon.

To better assess the importance of those local effects, the researchers distributed 160 blocks of pine tree wood across five sub-regions of temperate forest in the eastern United States — from Connecticut to northern Florida — and then monitored the decay that occurred over 13 months.

They selected similar forest types in order to focus on major differences in the effect of climate across the regional gradient. (The average annual temperature in southern New England is about 11 degrees Celsius cooler than Florida.) But within each of the five sub-regions they placed the wood blocks in different types of terrain to evaluate the effects of local versus regional factors on decomposition and capture the variability found in forest environments.

“Most people would try to make sure everything was as standard as possible,” Bradford said. “We said, ‘Well, let’s generate as much variation as possible.’ So we put some blocks on south-facing slopes, where they would be warmer in the summer, and others on north-facing slopes where it’s colder. We put some on top of ridges and others next to streams where it was wetter.”

After 13 months, they measured how much carbon had been lost, whether absorbed by the microbes growing on the wood or directly into the atmosphere as carbon dioxide.

According to their analysis, local-scale factors explained about three-quarters of the variation in wood decomposition, while climate explained only about one-quarter, contrary to the expectation that climate should be the predominant control.

Since those local factors likely are the primary drivers of decomposition rates, Bradford said, they should be better documented and integrated into climate models.

“The [climate] modelers know that they can only produce models based on the data sets that we give them,” he said. “So the message for field ecologists like me is to go out and get much richer data sets with much more information. We shouldn’t aggregate away information. We should make measurements at those local scales to capture all of the importance processes that affect ecosystem functioning.

“Then the modelers will have far richer data sets to test their models against and see if they work,” he adds.

The study was a collaboration among researchers from Yale; State University of New York-Buffalo; the Institute of Microbiology, Academy of Sciences of the Czech Republic; the U.S. National Center for Atmospheric Research; Columbia University; and the University of Central Florida.

Co-authors of the study, “Climate fails to predict wood decomposition at regional scales,” include Thomas W. Crowther, Daniel S. Maynard, and Emily E. Oldfield of the Yale School of Forestry & Environmental Studies.

The research was funded by the National Science Foundation’s Division of Environmental Biology and the Yale Climate & Energy Institute.

To read the complete article, visit: http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate2251.html

Kevin Dennehy | Eurek Alert!
Further information:
http://www.yale.edu

Further reports about: Environmental Forestry blocks decomposition ecosystem effects microbes terrestrial

More articles from Earth Sciences:

nachricht Cold Hotspots: METEOR expedition takes a close look at upwelling zones in the Baltic Sea
28.07.2015 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Twin volcanic chains above a single hotspot with distinct roots
28.07.2015 | Helmholtz Centre for Ocean Research Kiel (GEOMAR)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Possible Path Toward First Anti-MERS Drugs

28.07.2015 | Life Sciences

Smart Hydrogel Coating Creates “Stick-slip” Control of Capillary Action

28.07.2015 | Materials Sciences

Are Fish Getting High on Cocaine?

28.07.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>