Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Decades of research show massive Arctic ice cap is shrinking

Rate of ice-cap melt has been accelerating since 1985

Close to 50 years of data show the Devon Island ice cap, one of the largest ice masses in the Canadian High Arctic, is thinning and shrinking.

A paper published in the March edition of Arctic, the journal of the University of Calgary's Arctic Institute of North America, reports that between 1961 and 1985, the ice cap grew in some years and shrank in others, resulting in an overall loss of mass. But that changed 1985 when scientists began to see a steady decline in ice volume and area each year.

"We've been seeing more mass loss since 1985," says Sarah Boon, lead author on the paper and a Geography Professor at the University of Lethbridge. The reason for the change? Warmer summers.

The High Arctic is essentially a desert with low rates of annual precipitation. There is little accumulation of snow in the winter and cool summers, with temperatures at or below freezing, serve to maintain levels. Any increase of snow and ice takes years.

This delicate equilibrium is easily upset. One warm summer can wipe out five years of growth. And though the accelerated melting trend began in 1985, the last decade has seen four years with unusually warm summers - 2001, 2005, 2007 and 2008.

"What we see during these warm summers is the extent of the melt is greater," says Boon about the results of a five-year remote sensing study that ran between 2000 and 2004.

The white surfaces of snow and ice reflect heat – a process known as the albedo effect. Retreating ice exposes dark soil and gravel, which absorb heat and increase the melt rate of ice along the periphery of the cap. But it's not only the edges of the cap that are losing ice. At lower altitudes the ice is thinning as well.

Changes to the Devon ice cap, which covers approximately 14,400 sq. km, could have multiple impacts on everything from ship traffic to sea level.

There has already been an increase in the number of icebergs calving off from outlet glaciers that flow into the ocean. Boon explains that melt water runs between the bottom of the glacier and the ground, creating a slippery cushion that allows the glacier to slide forward more rapidly than it would in colder conditions.

"There are a lot of things we need to consider. One is the iceberg calving and its implications for shipping. These things don't just go away, they float out into the ocean," says Boon. A second area of concern is the contribution of increased glacier melt to rising sea level.

The work of Boon and her colleagues demonstrates the importance of long-term research. Work on Devon Island began in 1961 with researchers from the Arctic Institute of North America, including long-time Arctic scientist Roy 'Fritz' Koerner, who was part of the current study until his death in 2008. This ongoing research, which is continuing thanks to federal International Polar year funding, has created a comprehensive dataset that contributes to the understanding of the complex play between the ice cap, the atmosphere and the ocean.

"We all know long-term studies are important but they are really hard to pay for."

For media interviews with Sarah Boon contact:
Dr. Sarah Boon
Department of Geography, University of Lethbridge
Tel: 403-332-4569; Email:
Bob Cooney, Communications Officer, University of Lethbridge
Tel: 403 330-4609; email:
For information on Arctic Science Promotion program:
Ruth Klinkhammer, Director of Communications, Arctic Institute of North America
Tel: 403 220-7294, Email:
This media release is part of the Promotion of Arctic Science, an Arctic Institute of North America project made possible with the generous support of the Government of Canada Program for International Polar Year. The mission of the Arctic Institute of North America at the University of Calgary is to advance the study of the North American and circumpolar Arctic and to acquire, preserve and disseminate information on physical, environmental and social conditions in the North.

Ruth Klinkhammer | EurekAlert!
Further information:

Further reports about: Arctic Arctic ice cap Bird Communication Polar Day Science TV sea level

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>