Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decades of research show massive Arctic ice cap is shrinking

13.04.2010
Rate of ice-cap melt has been accelerating since 1985

Close to 50 years of data show the Devon Island ice cap, one of the largest ice masses in the Canadian High Arctic, is thinning and shrinking.

A paper published in the March edition of Arctic, the journal of the University of Calgary's Arctic Institute of North America, reports that between 1961 and 1985, the ice cap grew in some years and shrank in others, resulting in an overall loss of mass. But that changed 1985 when scientists began to see a steady decline in ice volume and area each year.

"We've been seeing more mass loss since 1985," says Sarah Boon, lead author on the paper and a Geography Professor at the University of Lethbridge. The reason for the change? Warmer summers.

The High Arctic is essentially a desert with low rates of annual precipitation. There is little accumulation of snow in the winter and cool summers, with temperatures at or below freezing, serve to maintain levels. Any increase of snow and ice takes years.

This delicate equilibrium is easily upset. One warm summer can wipe out five years of growth. And though the accelerated melting trend began in 1985, the last decade has seen four years with unusually warm summers - 2001, 2005, 2007 and 2008.

"What we see during these warm summers is the extent of the melt is greater," says Boon about the results of a five-year remote sensing study that ran between 2000 and 2004.

The white surfaces of snow and ice reflect heat – a process known as the albedo effect. Retreating ice exposes dark soil and gravel, which absorb heat and increase the melt rate of ice along the periphery of the cap. But it's not only the edges of the cap that are losing ice. At lower altitudes the ice is thinning as well.

Changes to the Devon ice cap, which covers approximately 14,400 sq. km, could have multiple impacts on everything from ship traffic to sea level.

There has already been an increase in the number of icebergs calving off from outlet glaciers that flow into the ocean. Boon explains that melt water runs between the bottom of the glacier and the ground, creating a slippery cushion that allows the glacier to slide forward more rapidly than it would in colder conditions.

"There are a lot of things we need to consider. One is the iceberg calving and its implications for shipping. These things don't just go away, they float out into the ocean," says Boon. A second area of concern is the contribution of increased glacier melt to rising sea level.

The work of Boon and her colleagues demonstrates the importance of long-term research. Work on Devon Island began in 1961 with researchers from the Arctic Institute of North America, including long-time Arctic scientist Roy 'Fritz' Koerner, who was part of the current study until his death in 2008. This ongoing research, which is continuing thanks to federal International Polar year funding, has created a comprehensive dataset that contributes to the understanding of the complex play between the ice cap, the atmosphere and the ocean.

"We all know long-term studies are important but they are really hard to pay for."

For media interviews with Sarah Boon contact:
Dr. Sarah Boon
Department of Geography, University of Lethbridge
Tel: 403-332-4569; Email: sarah.boon@uleth.ca
or
Bob Cooney, Communications Officer, University of Lethbridge
Tel: 403 330-4609; email: robert.cooney@uleth.ca
For information on Arctic Science Promotion program:
Ruth Klinkhammer, Director of Communications, Arctic Institute of North America
Tel: 403 220-7294, Email: r.klinkhammer@ucalgary.ca
This media release is part of the Promotion of Arctic Science, an Arctic Institute of North America project made possible with the generous support of the Government of Canada Program for International Polar Year. The mission of the Arctic Institute of North America at the University of Calgary is to advance the study of the North American and circumpolar Arctic and to acquire, preserve and disseminate information on physical, environmental and social conditions in the North.

Ruth Klinkhammer | EurekAlert!
Further information:
http://www.ucalgary.ca
http://www.arctic.ucalgary.ca

Further reports about: Arctic Arctic ice cap Bird Communication Polar Day Science TV sea level

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>