The Dead Sea: Tectonic concurrence below ten kilometres of sediments

This deep subsidence is a result of a tectonic concurrence between processes in the upper lithosphere that led to subsiding and a compensating upward flow of rocks in the deeper layers of the lithosphere.

This is a result presented by A. Petrunin and A. Sobolev from the GFZ – German Research Centre for Geosciences in the current issue of „PHYSICS OF THE EARTH AND PLANETARY INTERIORS“ (Vol. 171, S. 387 – 399).

In a series of thermomechanical numerical experiments they were able to show that the brittle layer of the Earth’s crust subsides when the African and the Arabian plate pass each other along a strike-slip fault. Due to the lateral displacement, the Earth’s crust gets thinner at this point and a pull-apart basin develops that in the course of roughly 15 million years has been filled with a layer of sediments that is up to ten kilometres thick.

In the upper part of the underlying Earth’s mantle, this basin development leads to a corresponding upward flow of hot and ductile rock material. These concurring tectonic processes thus determine the process of the basin development.

Petrunin and Sobolev demonstrate that the subsidence rate is controlled by four parameters: firstly the thickness of the brittle layer and the basin width, secondly the length of the strike-slip displacement, thirdly the rate of frictional softening of the crust and finally the viscosity of the ductile material in the upper mantle.

The detected mechanisms give insight into the formation and development of such pull-apart basins forming a natural rheology lab in which the history of the lithospheric deformation can be studied.

Media Contact

Franz Ossing alfa

More Information:

http://www.gfz-potsdam.de

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors