Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Data Show Much of Antarctic Is Warming More than Previously Thought

23.01.2009
Scientists studying climate change have long believed that while most of the rest of the globe has been getting steadily warmer, a large part of Antarctica – the East Antarctic Ice Sheet – has actually been getting colder.

But new research shows that for the last 50 years, much of Antarctica has been warming at a rate comparable to the rest of the world. In fact, the warming in West Antarctica is greater than the cooling in East Antarctica, meaning that on average the continent has gotten warmer, said Eric Steig, a University of Washington professor of Earth and space sciences and director of the Quaternary Research Center at the UW.

"West Antarctica is a very different place than East Antarctica, and there is a physical barrier, the Transantarctic Mountains, that separates the two," said Steig, lead author of a paper documenting the warming published in the Jan. 22 edition of Nature.

For years it was believed that a relatively small area known as the Antarctic Peninsula was getting warmer, but that the rest of the continent – including West Antarctica, the ice sheet most susceptible to potential future collapse – was cooling.

Steig noted that the West Antarctic Ice Sheet, with an average elevation of about 6,000 feet above sea level, is substantially lower than East Antarctica, which has an average elevation of more than 10,000 feet. While the entire continent is essentially a desert, West Antarctica is subject to relatively warm, moist storms and receives much greater snowfall than East Antarctica.

The study found that warming in West Antarctica exceeded one-tenth of a degree Celsius per decade for the last 50 years and more than offset the cooling in East Antarctica.

Co-authors of the paper are David Schneider of the National Center for Atmospheric Research in Boulder, Colo., a former student of Steig's; Scott Rutherford of Roger Williams University in Bristol, R.I.; Michael Mann of Pennsylvania State University; Josefino Comiso of NASA's Goddard Space Flight Center in Greenbelt, Md.; and Drew Shindell of NASA's Goddard Institute for Space Studies in New York City. The work was supported by grants from the National Science Foundation.

The researchers devised a statistical technique that uses data from satellites and from Antarctic weather stations to make a new estimate of temperature trends.

"People were calculating with their heads instead of actually doing the math," Steig said. "What we did is interpolate carefully instead of just using the back of an envelope. While other interpolations had been done previously, no one had really taken advantage of the satellite data, which provide crucial information about spatial patterns of temperature change."

Satellites calculate the surface temperature by measuring the intensity of infrared light radiated by the snowpack, and they have the advantage of covering the entire continent. However, they have only been in operation for 25 years. On the other hand, a number of Antarctic weather stations have been in place since 1957, the International Geophysical Year, but virtually all of them are within a short distance of the coast and so provide no direct information about conditions in the continent's interior.

The scientists found temperature measurements from weather stations corresponded closely with satellite data for overlapping time periods. That allowed them to use the satellite data as a guide to deduce temperatures in areas of the continent without weather stations.

"Simple explanations don't capture the complexity of climate," Steig said. "The thing you hear all the time is that Antarctica is cooling and that's not the case. If anything it's the reverse, but it's more complex than that. Antarctica isn't warming at the same rate everywhere, and while some areas have been cooling for a long time the evidence shows the continent as a whole is getting warmer."

A major reason most of Antarctica was thought to be cooling is because of a hole in the Earth's protective ozone layer that appears during the spring months in the Southern Hemisphere's polar region. Steig noted that it is well established that the ozone hole has contributed to cooling in East Antarctica.

"However, it seems to have been assumed that the ozone hole was affecting the entire continent when there wasn't any evidence to support that idea, or even any theory to support it," he said.

"In any case, efforts to repair the ozone layer eventually will begin taking effect and the hole could be eliminated by the middle of this century. If that happens, all of Antarctica could begin warming on a par with the rest of the world."

A high-resolution image is available at http://uwnews.org/images/newsreleases/2009/January/20090115_pid46450_

aid46448_warmantarctica_sourceimage.jpg

Cutline information: This illustration depicts the warming that scientists have determined has occurred in West Antarctica during the last 50 years, with the dark red showing the area that has warmed the most. (Image Credit: NASA)

Vince Stricherz | Newswise Science News
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>