Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data-driven tools cast geographical patterns of rainfall extremes in new light

20.12.2011
Using statistical analysis methods to examine rainfall extremes in India, a team of researchers has made a discovery that resolves an ongoing debate in published findings and offers new insights.

The study, initiated by Auroop Ganguly and colleagues at Oak Ridge National Laboratory, reports no evidence for uniformly increasing trends in rainfall extremes averaged over the entire Indian region. It does, however, find a steady and significant increase in the spatial variability of rainfall extremes over the region.

These findings, published in Nature Climate Change, are contrary to results of some earlier work on this subject. The new study uses statistical methods designed explicitly for modeling extreme values and associated uncertainties.

"Our research suggests that one needs to be aware of the different characterizations of extremes and that these characterizations require both interpretability and statistical rigor," said Ganguly, now a faculty member at Northeastern University in Boston.

In addition, it makes sense to look at local and regional drivers such as urbanization and deforestation in addition to global scale issues. Although this study focused on rainfall variability in India, the same methodology can be applied to any region of the world, Ganguly said.

Ganguly and co-authors Subimal Ghosh (Indian Institute of Technology Bombay, Debasish Das (Temple University) and Shih-Chieh Kao (ORNL) used their statistical methodologies to analyze data from 1,803 stations from 1951 to 2003. This information was provided in 1-by-1-degree spatial grids by the India Meteorological Department.

The research team noted that statistical observations offer complementary insights compared to the current generation of physics-based computational models. This is especially the case if the goal is to understand climate and rainfall variability at local to regional scales.

Understanding climate model-simulated trends of precipitation extremes and developing metrics relevant for water resources decisions were the focus of a paper published earlier this year in the Journal of Geophysical Research. In that paper, Ganguly and co-author Kao showed that while models provide relatively credible predictive insights of precipitation extremes at aggregate spatial scales, the uncertainty begins to increase significantly at localized spatial scales - especially over the tropical regions.

"Even as higher resolution models are attempting to get to the stage where spatially explicit insights can be generated, the kind of insights generated from observations in this study can be used as methods for model diagnostics and can help address science gaps," Kao said.

Ganguly noted that the Nature Climate Change paper, titled "Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes," is the result of a team effort with researchers from diverse disciplines. Ghosh, the first author, is a hydro-climate scientist and civil engineer; Das is a graduate student in computer science and data mining; Kao is a statistical who specializes in water availability and flood frequency analysis; and Ganguly, a civil engineer, specializes in climate extremes and water sustainability as well as data sciences for complex systems.

This research concept was initiated when all the authors were working with Ganguly at ORNL and was funded by the Laboratory Directed Research and Development program. The National Science Foundation's Expeditions in Computing program and the Department of Science and Technology of India also provided funding.

UT-Battelle manages ORNL for the Department of Energy's Office of Science.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>