Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data-driven tools cast geographical patterns of rainfall extremes in new light

20.12.2011
Using statistical analysis methods to examine rainfall extremes in India, a team of researchers has made a discovery that resolves an ongoing debate in published findings and offers new insights.

The study, initiated by Auroop Ganguly and colleagues at Oak Ridge National Laboratory, reports no evidence for uniformly increasing trends in rainfall extremes averaged over the entire Indian region. It does, however, find a steady and significant increase in the spatial variability of rainfall extremes over the region.

These findings, published in Nature Climate Change, are contrary to results of some earlier work on this subject. The new study uses statistical methods designed explicitly for modeling extreme values and associated uncertainties.

"Our research suggests that one needs to be aware of the different characterizations of extremes and that these characterizations require both interpretability and statistical rigor," said Ganguly, now a faculty member at Northeastern University in Boston.

In addition, it makes sense to look at local and regional drivers such as urbanization and deforestation in addition to global scale issues. Although this study focused on rainfall variability in India, the same methodology can be applied to any region of the world, Ganguly said.

Ganguly and co-authors Subimal Ghosh (Indian Institute of Technology Bombay, Debasish Das (Temple University) and Shih-Chieh Kao (ORNL) used their statistical methodologies to analyze data from 1,803 stations from 1951 to 2003. This information was provided in 1-by-1-degree spatial grids by the India Meteorological Department.

The research team noted that statistical observations offer complementary insights compared to the current generation of physics-based computational models. This is especially the case if the goal is to understand climate and rainfall variability at local to regional scales.

Understanding climate model-simulated trends of precipitation extremes and developing metrics relevant for water resources decisions were the focus of a paper published earlier this year in the Journal of Geophysical Research. In that paper, Ganguly and co-author Kao showed that while models provide relatively credible predictive insights of precipitation extremes at aggregate spatial scales, the uncertainty begins to increase significantly at localized spatial scales - especially over the tropical regions.

"Even as higher resolution models are attempting to get to the stage where spatially explicit insights can be generated, the kind of insights generated from observations in this study can be used as methods for model diagnostics and can help address science gaps," Kao said.

Ganguly noted that the Nature Climate Change paper, titled "Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes," is the result of a team effort with researchers from diverse disciplines. Ghosh, the first author, is a hydro-climate scientist and civil engineer; Das is a graduate student in computer science and data mining; Kao is a statistical who specializes in water availability and flood frequency analysis; and Ganguly, a civil engineer, specializes in climate extremes and water sustainability as well as data sciences for complex systems.

This research concept was initiated when all the authors were working with Ganguly at ORNL and was funded by the Laboratory Directed Research and Development program. The National Science Foundation's Expeditions in Computing program and the Department of Science and Technology of India also provided funding.

UT-Battelle manages ORNL for the Department of Energy's Office of Science.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Earth Sciences:

nachricht Better model of water under extreme conditions could aid understanding of Earth's mantle
21.06.2018 | University of Chicago

nachricht The Janus head of the South Asian monsoon
21.06.2018 | Max-Planck-Institut für Chemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>