Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data-driven tools cast geographical patterns of rainfall extremes in new light

20.12.2011
Using statistical analysis methods to examine rainfall extremes in India, a team of researchers has made a discovery that resolves an ongoing debate in published findings and offers new insights.

The study, initiated by Auroop Ganguly and colleagues at Oak Ridge National Laboratory, reports no evidence for uniformly increasing trends in rainfall extremes averaged over the entire Indian region. It does, however, find a steady and significant increase in the spatial variability of rainfall extremes over the region.

These findings, published in Nature Climate Change, are contrary to results of some earlier work on this subject. The new study uses statistical methods designed explicitly for modeling extreme values and associated uncertainties.

"Our research suggests that one needs to be aware of the different characterizations of extremes and that these characterizations require both interpretability and statistical rigor," said Ganguly, now a faculty member at Northeastern University in Boston.

In addition, it makes sense to look at local and regional drivers such as urbanization and deforestation in addition to global scale issues. Although this study focused on rainfall variability in India, the same methodology can be applied to any region of the world, Ganguly said.

Ganguly and co-authors Subimal Ghosh (Indian Institute of Technology Bombay, Debasish Das (Temple University) and Shih-Chieh Kao (ORNL) used their statistical methodologies to analyze data from 1,803 stations from 1951 to 2003. This information was provided in 1-by-1-degree spatial grids by the India Meteorological Department.

The research team noted that statistical observations offer complementary insights compared to the current generation of physics-based computational models. This is especially the case if the goal is to understand climate and rainfall variability at local to regional scales.

Understanding climate model-simulated trends of precipitation extremes and developing metrics relevant for water resources decisions were the focus of a paper published earlier this year in the Journal of Geophysical Research. In that paper, Ganguly and co-author Kao showed that while models provide relatively credible predictive insights of precipitation extremes at aggregate spatial scales, the uncertainty begins to increase significantly at localized spatial scales - especially over the tropical regions.

"Even as higher resolution models are attempting to get to the stage where spatially explicit insights can be generated, the kind of insights generated from observations in this study can be used as methods for model diagnostics and can help address science gaps," Kao said.

Ganguly noted that the Nature Climate Change paper, titled "Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes," is the result of a team effort with researchers from diverse disciplines. Ghosh, the first author, is a hydro-climate scientist and civil engineer; Das is a graduate student in computer science and data mining; Kao is a statistical who specializes in water availability and flood frequency analysis; and Ganguly, a civil engineer, specializes in climate extremes and water sustainability as well as data sciences for complex systems.

This research concept was initiated when all the authors were working with Ganguly at ORNL and was funded by the Laboratory Directed Research and Development program. The National Science Foundation's Expeditions in Computing program and the Department of Science and Technology of India also provided funding.

UT-Battelle manages ORNL for the Department of Energy's Office of Science.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>