Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark taiga under threat through climate change

24.02.2016

Boreal coniferous forests could see increased occurrences of fire as a result of global warming, with deciduous trees becoming more dominant in the future

Climate change is transforming the Earth, particularly in high-latitude regions. The boreal coniferous forests of the northern hemisphere will witness an increased abundance of deciduous trees. This is according to discoveries made by an international team of researchers headed by Susanne Tautenhahn, formerly a scientist at the Max Planck Institute of Biochemistry and now working at Friedrich Schiller University Jena. These changes will, in turn, have an impact on the climate – whether global warming will be intensified or decelerated as a result, however, is something that remains to be seen.


Impending change for the dark taiga: Global warming is causing an increase in the frequency of forest fires in boreal coniferous forests. This means that deciduous trees, which generally only appear as pioneer plants, could potentially dominate the landscape in the long run.

© MPI of Biochemistry, S. Tautenhahn

The effects of climate change in recent decades have been tangible. And these could potentially become even more serious by the end of the century, even if we do somehow manage to limit global warming to 2 degrees, the latest de facto target for global climate policy.

“Even the latest rise in temperature is leading to an increased frequency of extreme weather events,” says Susanne Tautenhahn. She predicts that storms, intense rainfall and thunderstorms will all become more commonplace. The appearance of the Earth is also being transformed as a result of climate change, and this is something that is already being observed, particularly in the cold temperate zones.

Here – from Canada and the US, to Scandinavia and through to Russia and Japan – boreal coniferous forests are still growing. These forests were the subject of a study carried out by Susanne Tautenhahn at the Max Planck Institute of Biochemistry in Jena. Tautenhahn, now a scientist at Friedrich Schiller University Jena, and her colleagues from Jena, Freiberg, Leipzig, Krasnoyarsk (Russia) and Gainesville (US) are using a combination of field studies and statistical modelling approaches to show, for the first time, the radical impact climate change is set to have on these forests.

Today, the forest dynamics of the Siberian dark taiga show the prevailing growth of spruce trees, firs and pine trees. Deciduous trees here only appear shortly after disruptions such as fire, i.e. in an early stage of succession, in which various plant species recolonize disturbed habitats one after the other. According to the findings of the researchers, however, global warming will set in motion a chain of events here that will pave the way for the long-term domination of deciduous hardwoods. “Boreal forests are one of the largest stores of carbon on Earth, and two-thirds of these forests are located in Siberia,” says Tautenhahn. Thus, the expectation is that any changes in these forests will have repercussions on global climate.

Forest fires in the taiga to increase as a result of climate change

Forest fires are the reason for this emerging change in the taiga. “Fire acts as an important regulator in the natural development cycle of forests,” says Tautenhahn. Only through the destruction of old tree stock can new plants populate large surface areas. “However, climate change is intensifying the frequency and strength of fires, for instance due to lightning strikes, and the natural regeneration processes are being thrown out of balance,” explains the scientist.

In multiple expeditions lasting several months, Tautenhahn and her colleagues surveyed previously burned areas along the Yenisei River in Siberia. They counted the number of seedlings that have become established since the fire as well as the number of old trees that survived the fire – as the seeds of these trees could ensure new growth. On the basis of this data and with the aid of satellite images of the region, information on the severity of the fires and on the time periods that have elapsed since the fires, the researchers were able to develop a model that can, for the first time, track in detail the regeneration of the forest.

Cooling as a result of higher albedo and increased evaporation

Here, it became clear that the re-colonization of conifers is limited because their ability to disperse their relatively large seeds is limited. Conifer seeds are usually transported by the wind and can only travel relatively short distances. This makes it difficult for the trees to extensively re-colonize burnt areas, especially after severe fires with large burn zones. The seeds of deciduous trees, on the other hand, are very small and capable of covering long distances with the wind. This means that they can take over treeless surfaces a lot quicker and dominate these areas for the long term, even up until the late stage of succession. This advantage can be exploited to its full potential when fires are more intense and have larger burn zones.

What this change means in concrete terms for the global climate is currently the subject of intense discussions by researchers: they predict that the increased abundance of deciduous trees in the boreal forests of North America will slow down global warming in the medium term and reduce the occurrences of fire; in the long run, they expect the cooling effect to weaken the fire regime in North America, thus enabling a re-colonization of conifers. In contrast, however, Susanne Tautenhahn and her colleagues predict another effect for the Siberian forests in the long term.

“As in North America, the Siberian dark taiga will also see a cooling period thanks to a higher albedo and higher evaporative cooling in the medium term. This cooling will be felt around the world,” says the Jena-based botanist. At the same time, however, the reduction of the typical Siberian conifers, which store high levels of moisture at ground level, will increase the likelihood of forest fires even further. “This can become a self-reinforcing process that could effectively change the eco-system and pave the way for the dominance of deciduous trees on a long-term basis in Siberia.

“We do not know whether the taiga will store more or less carbon with a changed stock of trees.” This means that the researchers are still unable to accurately predict the impact of the change on the climate. However, the feedback is most likely negative since albedo and evaporative cooling increase.


Contact

Dr. Susanne Tautenhahn

Phone: +49 36 4194-9267

Email: susanne.tautenhahn@uni-jena.de

 
Dr. Jens Kattge
Max Planck Institute for Biogeochemistry, Jena
Phone: +49 3641 576-226

Email: jkattge@bgc-jena.mpg.de


Original publication


Tautenhahn, S., Lichstein, J. W., Jung, M., Kattge, J., Bohlman, S. A., Heilmeier, H., Prokushkin, A., Kahl, A. and Wirth, C.

Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes

DOI: 10.1111/gcb.13181

Source

Dr. Susanne Tautenhahn | Max Planck Institute for Biogeochemistry, Jena
Further information:
https://www.mpg.de/10315240/taiga-fire-sibiria-climatechange

Further reports about: Max Planck Institute evaporative cooling global warming

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>