Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Damage, pollution from wildfires could surge as western U.S. warms

29.07.2009
By 2055, wildfires in the western United States could scorch about 50 percent more land than they do now, causing a sharp decline in the region's air quality, a new study predicts.

This potential leap in destructiveness and pollution--mainly from an increase in wildfire frequency--is forecast by computer models calculating impacts of moderate global warming on western U.S. wildfire patterns and atmospheric chemistry. As fires and smoke increase, the health of people living in the region could suffer, the study's authors say.

Atmospheric scientists at Harvard University who conducted the research report that their models show the greatest future increases in area burned (75 to 175 percent) in the forests of the Pacific Northwest and the Rocky Mountains. And, because of extra burning throughout the western U.S., one important type of smoke particle--organic carbon aerosols--would increase, on average, by about 40 percent during the roughly half-century period, they add.

Previous studies by other researchers have probed the links between climate change and fire severity in the West and elsewhere. However, the Harvard study represents the first attempt to quantify the impact of future wildfires on the air we breathe, says Jennifer Logan of Harvard's School of Engineering and Applied Sciences (SEAS), who led the research. A report on the results has been accepted for publication in the Journal of Geophysical Research - Atmospheres, a journal of the American Geophysical Union (AGU).

"Warmer temperatures can dry out underbrush, leading to a more serious conflagration once a fire is started by lightning or human activity," notes Logan.

"Because smoke and other particles from fires adversely affect air quality, an increase in wildfires could have large impacts on human health."

To conduct the research, the team first examined a 25-year record of observed meteorology and fire statistics to identify those meteorological factors that could best predict area burned for each ecosystem in the western United States. To see how these meteorological factors would change in the future, the researchers then next ran a global climate model out to 2055, following a scenario of future greenhouse gas emissions known as A1B. This scenario, one of several devised by the United Nations Intergovernmental Panel on Climate Change, describes a future world with rapid economic growth and balanced energy generation from fossil and alternative fuels. Relative to the other scenarios, it leads to a moderate warming of the earth's average surface temperature, about 1.6 degrees Celsius (3 degrees Fahrenheit) by 2050.

"By hypothesizing that the same relationships between meteorology and area burned still hold in the future, we then could predict wildfire activity and emissions from 2000 to the 2050's," explains Logan.

As a last step, the researchers used an atmospheric chemistry model to understand how the change in wildfire activity would affect air quality. This model, combining their predictions of areas burned with projected 2050s meteorology data, shows the quantities of emissions and the fates of smoke and other particles released by the future wildfires. The resulting diminished air quality could lead to smoggier skies and adversely affect those suffering from lung and heart conditions such as asthma and chronic bronchitis.

Such consequences are a "climate penalty" that diminishes the effectiveness of efforts to reduce air pollution across the United States, the researchers say. Their new work could help policymakers gauge how severe that penalty might become. In addition, the study underscores the need for a vigorous fire management plan.

The team next plans to focus on future wildfires and air quality over the densely populated areas in California and in the southwest United States.

Logan's collaborators include Research Associate Loretta Mickley and former postdocs Dominick Spracklen and Rynda Hudman, all at SEAS. Grants from the STAR (Science to Achieve Results) program of the National Center for Environmental Research of the U.S. Environmental Protection Agency and from NASA supported this research.

Title:
"Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous

aerosol concentrations in the western United States"

Authors:
Dominick V. Spracklen: School of Engineering and Applied Sciences, Harvard
University, Cambridge, Massachusetts, USA; Now at School of Earth and
Environment, University of Leeds, Leeds, UK;
Loretta J. Mickley, Jennifer A. Logan, Rynda C. Hudman, Rosemarie Yevich: School
of Engineering and Applied Sciences, Harvard University, Cambridge,
Massachusetts, USA;
Michael D. Flannigan: Canadian Forest Service, Sault Ste. Marie, Ontario, Canada;

Anthony L. Westerling: University of California, Merced, California, USA.

Contact information for authors:
Jennifer A. Logan, Senior Research Fellow, 617-495-4582, jlogan@seas.harvard.edu
Loretta J. Mickley, Research Associate, 617-496-5635, mickley@fas.harvard.edu

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>