Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Damage, pollution from wildfires could surge as western U.S. warms

29.07.2009
By 2055, wildfires in the western United States could scorch about 50 percent more land than they do now, causing a sharp decline in the region's air quality, a new study predicts.

This potential leap in destructiveness and pollution--mainly from an increase in wildfire frequency--is forecast by computer models calculating impacts of moderate global warming on western U.S. wildfire patterns and atmospheric chemistry. As fires and smoke increase, the health of people living in the region could suffer, the study's authors say.

Atmospheric scientists at Harvard University who conducted the research report that their models show the greatest future increases in area burned (75 to 175 percent) in the forests of the Pacific Northwest and the Rocky Mountains. And, because of extra burning throughout the western U.S., one important type of smoke particle--organic carbon aerosols--would increase, on average, by about 40 percent during the roughly half-century period, they add.

Previous studies by other researchers have probed the links between climate change and fire severity in the West and elsewhere. However, the Harvard study represents the first attempt to quantify the impact of future wildfires on the air we breathe, says Jennifer Logan of Harvard's School of Engineering and Applied Sciences (SEAS), who led the research. A report on the results has been accepted for publication in the Journal of Geophysical Research - Atmospheres, a journal of the American Geophysical Union (AGU).

"Warmer temperatures can dry out underbrush, leading to a more serious conflagration once a fire is started by lightning or human activity," notes Logan.

"Because smoke and other particles from fires adversely affect air quality, an increase in wildfires could have large impacts on human health."

To conduct the research, the team first examined a 25-year record of observed meteorology and fire statistics to identify those meteorological factors that could best predict area burned for each ecosystem in the western United States. To see how these meteorological factors would change in the future, the researchers then next ran a global climate model out to 2055, following a scenario of future greenhouse gas emissions known as A1B. This scenario, one of several devised by the United Nations Intergovernmental Panel on Climate Change, describes a future world with rapid economic growth and balanced energy generation from fossil and alternative fuels. Relative to the other scenarios, it leads to a moderate warming of the earth's average surface temperature, about 1.6 degrees Celsius (3 degrees Fahrenheit) by 2050.

"By hypothesizing that the same relationships between meteorology and area burned still hold in the future, we then could predict wildfire activity and emissions from 2000 to the 2050's," explains Logan.

As a last step, the researchers used an atmospheric chemistry model to understand how the change in wildfire activity would affect air quality. This model, combining their predictions of areas burned with projected 2050s meteorology data, shows the quantities of emissions and the fates of smoke and other particles released by the future wildfires. The resulting diminished air quality could lead to smoggier skies and adversely affect those suffering from lung and heart conditions such as asthma and chronic bronchitis.

Such consequences are a "climate penalty" that diminishes the effectiveness of efforts to reduce air pollution across the United States, the researchers say. Their new work could help policymakers gauge how severe that penalty might become. In addition, the study underscores the need for a vigorous fire management plan.

The team next plans to focus on future wildfires and air quality over the densely populated areas in California and in the southwest United States.

Logan's collaborators include Research Associate Loretta Mickley and former postdocs Dominick Spracklen and Rynda Hudman, all at SEAS. Grants from the STAR (Science to Achieve Results) program of the National Center for Environmental Research of the U.S. Environmental Protection Agency and from NASA supported this research.

Title:
"Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous

aerosol concentrations in the western United States"

Authors:
Dominick V. Spracklen: School of Engineering and Applied Sciences, Harvard
University, Cambridge, Massachusetts, USA; Now at School of Earth and
Environment, University of Leeds, Leeds, UK;
Loretta J. Mickley, Jennifer A. Logan, Rynda C. Hudman, Rosemarie Yevich: School
of Engineering and Applied Sciences, Harvard University, Cambridge,
Massachusetts, USA;
Michael D. Flannigan: Canadian Forest Service, Sault Ste. Marie, Ontario, Canada;

Anthony L. Westerling: University of California, Merced, California, USA.

Contact information for authors:
Jennifer A. Logan, Senior Research Fellow, 617-495-4582, jlogan@seas.harvard.edu
Loretta J. Mickley, Research Associate, 617-496-5635, mickley@fas.harvard.edu

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>