Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Damage, pollution from wildfires could surge as western U.S. warms

29.07.2009
By 2055, wildfires in the western United States could scorch about 50 percent more land than they do now, causing a sharp decline in the region's air quality, a new study predicts.

This potential leap in destructiveness and pollution--mainly from an increase in wildfire frequency--is forecast by computer models calculating impacts of moderate global warming on western U.S. wildfire patterns and atmospheric chemistry. As fires and smoke increase, the health of people living in the region could suffer, the study's authors say.

Atmospheric scientists at Harvard University who conducted the research report that their models show the greatest future increases in area burned (75 to 175 percent) in the forests of the Pacific Northwest and the Rocky Mountains. And, because of extra burning throughout the western U.S., one important type of smoke particle--organic carbon aerosols--would increase, on average, by about 40 percent during the roughly half-century period, they add.

Previous studies by other researchers have probed the links between climate change and fire severity in the West and elsewhere. However, the Harvard study represents the first attempt to quantify the impact of future wildfires on the air we breathe, says Jennifer Logan of Harvard's School of Engineering and Applied Sciences (SEAS), who led the research. A report on the results has been accepted for publication in the Journal of Geophysical Research - Atmospheres, a journal of the American Geophysical Union (AGU).

"Warmer temperatures can dry out underbrush, leading to a more serious conflagration once a fire is started by lightning or human activity," notes Logan.

"Because smoke and other particles from fires adversely affect air quality, an increase in wildfires could have large impacts on human health."

To conduct the research, the team first examined a 25-year record of observed meteorology and fire statistics to identify those meteorological factors that could best predict area burned for each ecosystem in the western United States. To see how these meteorological factors would change in the future, the researchers then next ran a global climate model out to 2055, following a scenario of future greenhouse gas emissions known as A1B. This scenario, one of several devised by the United Nations Intergovernmental Panel on Climate Change, describes a future world with rapid economic growth and balanced energy generation from fossil and alternative fuels. Relative to the other scenarios, it leads to a moderate warming of the earth's average surface temperature, about 1.6 degrees Celsius (3 degrees Fahrenheit) by 2050.

"By hypothesizing that the same relationships between meteorology and area burned still hold in the future, we then could predict wildfire activity and emissions from 2000 to the 2050's," explains Logan.

As a last step, the researchers used an atmospheric chemistry model to understand how the change in wildfire activity would affect air quality. This model, combining their predictions of areas burned with projected 2050s meteorology data, shows the quantities of emissions and the fates of smoke and other particles released by the future wildfires. The resulting diminished air quality could lead to smoggier skies and adversely affect those suffering from lung and heart conditions such as asthma and chronic bronchitis.

Such consequences are a "climate penalty" that diminishes the effectiveness of efforts to reduce air pollution across the United States, the researchers say. Their new work could help policymakers gauge how severe that penalty might become. In addition, the study underscores the need for a vigorous fire management plan.

The team next plans to focus on future wildfires and air quality over the densely populated areas in California and in the southwest United States.

Logan's collaborators include Research Associate Loretta Mickley and former postdocs Dominick Spracklen and Rynda Hudman, all at SEAS. Grants from the STAR (Science to Achieve Results) program of the National Center for Environmental Research of the U.S. Environmental Protection Agency and from NASA supported this research.

Title:
"Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous

aerosol concentrations in the western United States"

Authors:
Dominick V. Spracklen: School of Engineering and Applied Sciences, Harvard
University, Cambridge, Massachusetts, USA; Now at School of Earth and
Environment, University of Leeds, Leeds, UK;
Loretta J. Mickley, Jennifer A. Logan, Rynda C. Hudman, Rosemarie Yevich: School
of Engineering and Applied Sciences, Harvard University, Cambridge,
Massachusetts, USA;
Michael D. Flannigan: Canadian Forest Service, Sault Ste. Marie, Ontario, Canada;

Anthony L. Westerling: University of California, Merced, California, USA.

Contact information for authors:
Jennifer A. Logan, Senior Research Fellow, 617-495-4582, jlogan@seas.harvard.edu
Loretta J. Mickley, Research Associate, 617-496-5635, mickley@fas.harvard.edu

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>