Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cyclones spurt water into the stratosphere, feeding global warming

22.04.2009
New research suggests intertwining of tropical cyclones, climate change

Scientists at Harvard University have found that tropical cyclones readily inject ice far into the stratosphere, possibly feeding global warming.

The finding, published in Geophysical Research Letters, provides more evidence of the intertwining of severe weather and global warming by demonstrating a mechanism by which storms could drive climate change. Many scientists now believe that global warming, in turn, is likely to increase the severity of tropical cyclones.

"Since water vapor is an important greenhouse gas, an increase of water vapor in the stratosphere would warm the Earth's surface," says David M. Romps, a research associate in Harvard's Department of Earth and Planetary Science. "Our finding that tropical cyclones are responsible for many of the clouds in the stratosphere opens up the possibility that these storms could affect global climate, in addition to the oft-mentioned possibility of climate change affecting the frequency and intensity of tropical cyclones."

Romps and co-author Zhiming Kuang, assistant professor of climate science in Harvard's Faculty of Arts and Sciences, were intrigued by earlier data suggesting that the amount of water vapor in the stratosphere has grown by roughly 50 percent over the past 50 years. Scientists are currently unsure why this increase has occurred; the Harvard researchers sought to examine the possibility that tropical cyclones might have contributed by sending a large fraction of their clouds into the stratosphere.

Using infrared satellite data gathered from 1983 to 2006, Romps and Kuang analyzed towering cloud tops associated with thousands of tropical cyclones, many of them near the Philippines, Mexico, and Central America. Their analysis demonstrated that in a cyclone, narrow plumes of miles-tall storm clouds can rise so explosively through the atmosphere that they often push into the stratosphere.

Romps and Kuang found that tropical cyclones are twice as likely as other storms to punch into the normally cloud-free stratosphere, and four times as likely to inject ice deep into the stratosphere.

"It is ... widely believed that global warming will lead to changes in the frequency and intensity of tropical cyclones," Romps and Kuang write in Geophysical Research Letters. "Therefore, the results presented here establish the possibility for a feedback between tropical cyclones and global climate."

Typically, very little water is allowed passage through the stratosphere's lower boundary, known as the tropopause. Located some 6 to 11 miles above the Earth's surface, the tropopause is the coldest part of the Earth's atmosphere, making it a barrier to the lifting of water vapor into the stratosphere: As air passes slowly through the tropopause, it gets so cold that most of its water vapor freezes out and falls away.

But if very deep clouds, such as those in a tropical cyclone that can rise through the atmosphere at speeds of up to 40 miles per hour, can punch through the tropopause too quickly for this to happen, they can deposit their ice in the warmer overlying stratosphere, where it then evaporates.

"This suggests that tropical cyclones could play an important role in setting the humidity of the stratosphere," Romps and Kuang write.

Romps and Kuang's research was funded by the Eppley Foundation and NASA.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>