Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cutting edge training developed the human brain 80 000 years ago

Advanced crafting of stone spearheads contributed to the development of new ways of human thinking and behaving. This is what new findings by archaeologists at Lund University have shown.

The technology took a long time to acquire, required step by step planning and increased social interaction across the generations. This led to the human brain developing new abilities.

200 000 years ago, small groups of people wandered across Africa, looking like us anatomically but not thinking the way we do today. Studies of fossils and the rate of mutations in DNA show that the human species to which we all belong – Homo sapiens sapiens – has existed for 200 000 years.

But the archaeological research of recent years has shown that, even though the most ancient traces of modern humans are 200 000 years old, the development of modern cognitive behaviour is probably much younger. For about 100 000 years, there were people who looked like us, but who acted on the basis of cognitive structures in which we would only partially recognise ourselves and which we do not define today as modern behaviour.

It is precisely that period of transformation that the researchers at Lund University in Sweden have studied. In the next issue of the well renowned Journal of Human Evolution, they present their new findings on the early modern humans that existed in what is now South Africa, approximately 80 000 years ago.

The findings show that people at that time used advanced technology for the production of spearheads and that the complicated crafting process developed the working memory and social life of humans.

“When the technology was passed from one generation to the next, from adults to children, it became part of a cultural learning process which created a socially more advanced society than before. This affected the development of the human brain and cognitive ability”, says Anders Högberg, PhD.

The technology led to increased social interaction within and across the generations. This happened because the crafting of stone spearheads took a long time to learn and required a lot of knowledge, both theoretical and practical. Producing a stone spearhead also required the ability to plan in several stages. This social learning contributed to the subsequent development of early modern humans’ cognitive ability to express symbolism and abstract thoughts through their material culture, for example in the form of decorated objects.

“The excavations have been carried out in a small cave; the location we have studied is called Hollow Rock Shelter and lies 250 km north of Cape Town. We are cooperating with the University of Cape Town and the research we have just published is part of a larger research project on this location”, says Professor Lars Larsson.

The article is entitled Lithic technology and behavioural modernity: New results from the Still Bay site, Hollow Rock Shelter, Western Cape Province, South Africa.

For more information, please contact:
Anders Högberg, mobile 0709-124315 email:
Lars Larsson, mobile 0708-345430 email

Megan Grindlay | idw
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>