Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cutting carbon dioxide helps prevent drying

25.03.2011
Recent climate modeling has shown that reducing the concentration of carbon dioxide in the atmosphere would give the Earth a wetter climate in the short term.

New research from Carnegie Global Ecology scientists Long Cao and Ken Caldeira offers a novel explanation for why climates are wetter when atmospheric carbon dioxide (CO2) concentrations are decreasing. Their findings, published online today by Geophysical Research Letters, show that cutting carbon dioxide concentrations could help prevent droughts caused by global warming.

Cao and Caldeira's new work shows that this precipitation increase is due to the heat-trapping property of the greenhouse gas carbon dioxide in the atmosphere. Carbon dioxide traps heat in the middle of the atmosphere. This warm air higher in the atmosphere tends to prevent the rising air motions that create thunderstorms and rainfall.

As a result, an increase in the atmospheric concentration of carbon dioxide tends to suppress precipitation. Similarly, a decrease in the atmospheric concentration of carbon dioxide tends to increase precipitation.

The results of this study show that cutting the concentration of precipitation-suppressing carbon dioxide in the atmosphere would increase global precipitation. This is important because scientists are concerned that unchecked global warming could cause already dry areas to get drier. (Global warming may also cause wet areas to get wetter.) Cao and Caldeira's findings indicate that reducing atmospheric carbon dioxide could prevent droughts caused by climate change.

"This study shows that the climate is going to be drier on the way up and wetter on the way down," Caldeira said, adding:"Proposals to cool the earth using geo-engineering tools to reflect sunlight back to space would not cause a similar pulse of wetness."

The team's work shows that carbon dioxide rapidly affects the structure of the atmosphere, causing quick changes precipitation, as well as many other aspects of Earth's climate, well before the greenhouse gas noticeably affects temperature. These results have important implications for understanding the effects of climate change caused by carbon dioxide, as well as the potential effects of reducing atmospheric carbon dioxide concentrations.

"The direct effects of carbon dioxide on precipitation take place quickly," said Cao. "If we could cut carbon dioxide concentrations now, we would see precipitation increase within the year, but it would take many decades for climate to cool."

Ken Caldeira | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>