Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cutoff switch may limit spread, duration of oxygen minimum zones

19.05.2014

A new study examining the impact of iron released from continental margin sediments has documented a natural limiting switch that may keep these ocean systems from developing a runaway feedback loop that could lead to unchecked hypoxic areas, or persistent "dead zones."

The findings are particularly important, scientists say, because as the climate warms oxygen minimum zones are expected to expand in coming decades and could affect coastal fisheries as well as the global carbon cycle. But the study, which was led by researchers at Oregon State University, suggests that there may be a limit to the expansion of these OMZs.

The results are being published this week in the journal Nature Geoscience.

It is well-documented that iron is a crucial catalyst for fueling biological productivity in the oceans. When there is an insufficient amount of iron in the water column, microscopic plants called phytoplankton cannot fully consume nitrates and phosphates, limiting their growth. There are several potential sources of iron – including river sediments, windblown dust and continental margin sediments – but to be useful to plankton, the iron must be dissolved rather than locked up in sediments.

Oxygen may be a key that unlocks the storehouse of iron.

In high-oxygen environments, most of the iron that is dissolved in the water precipitates – turning into iron oxide coatings (similar to rust) on particles, which sink to the seafloor. Organic remains of plants and animals also sink to the seafloor and their rotting remains consume the oxygen dissolved in seawater. As oxygen lowers, a hypoxic dead zone may form. When it does the iron oxides dissolve and may diffuse back into the water column where the iron again becomes available to fertilize plankton growth, as long as other major nutrients such as nitrate and phosphate are available.

"When this moderate hypoxic state occurs, the iron release fuels more biological productivity and the organic particles fall to the sea floor where they decay and consume more oxygen, making hypoxia worse," said Florian Scholz, a postdoctoral researcher in OSU's College of Earth, Ocean, and Atmospheric Sciences and lead author on the Nature Geoscience study. "That leads to this feedback loop of more iron release triggering more productivity, triggering more iron release.

"But we found that when the oxygen approaches zero a new group of minerals, iron sulfides, are formed," Scholz added. "This is the key to the limit switch because when the iron gets locked up in sulfides, it is no longer dissolved and thus not available to the plankton. The runaway hypoxia stops and the hypoxic region is limited."

An important part of the study was the development of indicators for sedimentary iron release during past periods of ocean deoxygenation, the researchers said. Scholz and his colleagues investigated a sediment core from the upwelling area of Peru, where the subsurface water column has one of the lowest ongoing oxygen levels on Earth.

In their study, the researchers looked at concentrations of iron, uranium and molybdenum in ocean sediments dating back 140,000 years.

The key to the discovery, they say, was determining whether sediments buried during a past period of ocean deoxygenation had an iron deficit. Sediment with an iron deficit suggests that the iron was removed and potentially transported offshore into iron-limited ocean regions. Conversely, when the sediments held a lot of iron, it likely was retained and thus not available for fertilization.

"Florian found that there are two states in which iron is locked up and unavailable to fuel plant growth," said Alan Mix, an Oregon State geochemist and co-author on the study. "When there is a lot of iron in the sediment, but no molybdenum, the iron is stored in oxide minerals.

"This happens when oxygen is abundant," Mix added. "But if there is iron and molybdenum, then the iron is stored in sulfide minerals like pyrite, meaning the system has little or no oxygen available.

What the researchers discovered in the Peru system "is a window for iron release, which could be a key to the biological productivity in this iron-limited ocean region," Scholz said.

The near-anoxic Peru system differs from the Pacific Northwest coast of the United States, which has experienced several hypoxic events over the past decade. The Northwest waters are not yet as low in oxygen or iron as Peru.

"These basic reactions have been known for a while," Mix said, "but documenting them in the real world on a large scale – and associating them with climate change – is quite significant and especially important given projections of growing hypoxia in a warming climate."

###

The study was supported by the European Union, the German Research Foundation and the National Science Foundation.

Other researchers on the study include James McManus of the University of Akron (a former Oregon State faculty member); Christian Hensen of the GEOMAR Helmholtz Centre for Ocean Research in Kiel, Germany; and Ralph Schneider, Kiel University.

Florian Scholz | Eurek Alert!
Further information:
http://www.oregonstate.edu

Further reports about: Earth Geoscience Ocean Oregon Sediment environments productivity

More articles from Earth Sciences:

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

nachricht The significance of seaweed
16.09.2016 | King Abdullah University of Science and Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>