Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cut emissions further or face risks of high air pollution, study shows

02.08.2012
Most of the world’s population will be subject to degraded air quality in 2050 if man-made emissions continue as usual.

In this ‘business-as-usual’ scenario, the average world citizen 40 years from now will experience similar air pollution to that of today’s average East Asian citizen. These conclusions are those of a study published today in Atmospheric Chemistry and Physics, an Open Access journal of the European Geosciences Union (EGU).

Air pollution is a major health risk that may worsen with increasing industrial activity. At present, urban outdoor air pollution causes 1.3 million estimated deaths per year worldwide, according to the World Health Organisation [1].

“Strong actions and further effective legislation are essential to avoid the drastic deterioration of air quality, which can have severe effects on human health,” concludes the team of scientists, led by Andrea Pozzer of the Abdus Salam International Centre for Theoretical Physics in Italy (now at the Max Planck Institute of Chemistry in Germany), in the new paper.

The researchers studied the impact of man-made emissions on air quality, assuming past emission trends continue and no additional climate change and air pollution reduction measures (beyond what is in place since 2005) are implemented. They point out that, while pessimistic, the global emissions trends indicate such continuation.

“At present the post-Kyoto climate negotiations are progressing slowly, and it is unclear how air quality policies will develop globally,” explains co-author Greet Janssens-Maenhout of the European Commission Joint Research Centre in Italy. “In regions with economic growth, it might be less effective to implement emission-reduction measures due to strong growth in activities in particular sectors; in countries suffering from the economic downturn, implementing expensive air-quality measures could prove difficult in coming years,” she adds.

“We show that further legislation to control and reduce man-made emissions is needed, in particular for eastern China and northern India, to avoid hot-spots of elevated air pollution,” says Pozzer. Combined with the fact that these are regions of high population density, elevated air pollution here would mean that air quality would worsen significantly for the average world citizen in 2050.

Air pollution would also increase in Europe and North America, but to a much lesser extent than in Asia, due to the effect of mitigation policies that have been in place for over two decades.

Pozzer and his colleagues estimated air quality in 2005, 2010, 2025 and 2050 using an atmospheric chemistry model. “The model uses basic mathematical formulation to predict the meteorology and the chemical composition of the atmosphere,” Pozzer explains. “In practice, it is a software used to forecast – or hindcast, for past years – the status of the atmosphere at specific times.”

The results show that in 2025 and 2050, under the business-as-usual scenario studied, East Asia will be exposed to high levels of pollutants, such as nitrogen dioxide, sulphur dioxide and fine particulate matter (PM2.5) [2]. Northern India and the Arabian Gulf region, on the other hand, will suffer a marked increase in ozone levels.

The analysis now published is the first to include all five major air pollutants know to negatively impact human health: PM2.5, nitrogen dioxide, sulphur dioxide, ozone, and carbon monoxide. The scientists considered pollutants released through human activity, as well as those occurring naturally such as desert dust, sea spray, or volcanic emissions.

Taking all pollutants into account, eastern China, northern India, the Middle East, and North Africa are projected to have the world’s poorest air quality in the future. In the latter locations this is due to a combination of natural desert dust and man-induced ozone. The effect of anthropogenic pollution emissions are predicted to be most harmful in East and South Asia, where air pollution is projected to triple compared to current levels.

The study aimed to compare the influence of man-made emissions on air quality in different regions, and show how no-further legislation to reduce emissions can result in drastic deterioration of air quality worldwide compared to the present day situation.

[1] World Health Organisation (WHO) ‘Air quality and health’ fact sheet (September 2011) http://www.who.int/mediacentre/factsheets/fs313/en/index.html

[2] PM2.5 refers to pollutant particles less than 2.5 micrometers in aerodynamic size, or about a quarter of the size of a cloud droplet. According to the WHO, “PM affects more people than any other pollutant.” PM2.5 is more dangerous than particulate matter of larger size because these particles can reach the smallest of airways and interfere with gas exchange in the lungs. (Source: http://www.who.int/mediacentre/factsheets/fs313/en/index.html)

Information for editors
This research is presented in the paper ‘Effects of business-as-usual anthropogenic emissions on air quality’ to appear in the EGU Open Access journal Atmospheric Chemistry and Physics on 01 August 2012.

The scientific article is available online, from the publication date onwards, at http://www.atmos-chem-phys.net/recent_papers.html. To receive a copy of the peer-reviewed paper before publication, please contact the EGU Media and Communications Officer.

The discussion paper (not peer-reviewed) and reviewers comments is available at
http://www.atmos-chem-phys-discuss.net/12/8617/2012/acpd-12-8617-2012-discussion.html

The team is composed of A. Pozzer (The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy; and Max Planck Institute of Chemistry, Mainz, Germany [MPIC]), P. Zimmermann (MPIC), U. M. Doering (formerly European Commission Joint Research Centre, Ispra, Italy [JRC]), J. van Aardenne (formerly JRC, now at European Environment Agency, based in Copenhagen, Denmark), H. Tost (Johannes–Gutenberg University, Mainz, Germany), F. Dentener (JRC), G. Janssens–Maenhout (JRC), and J. Lelieveld (MPIC; The Cyprus Institute, Nicosia, Cyprus; and King Saud University, Riyadh, Saudi Arabia).

The European Geosciences Union (EGU, http://www.egu.eu/) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 14 diverse scientific journals, which use an innovative open-access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 10,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate change, and renewable energies.

Contacts
Andrea Pozzer
The Max Planck Institute for Chemistry,
Mainz, Germany
Tel: +49-6131-305-4600
Email: andrea.pozzer@mpic.de
Bárbara T. Ferreira
EGU Media and Communications Officer
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu

Dr. Bárbara T. Ferreira | idw
Further information:
http://www.mpic.de
http://www.egu.eu
http://www.atmos-chem-phys.net/recent_papers.html

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>