Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU study provides new evidence ancient asteroid caused global firestorm on Earth

28.03.2013
Fires would have burned every twig, bush and tree on Earth

A new look at conditions after a Manhattan-sized asteroid slammed into a region of Mexico in the dinosaur days indicates the event could have triggered a global firestorm that would have burned every twig, bush and tree on Earth and led to the extinction of 80 percent of all Earth's species, says a new University of Colorado Boulder study.


A new CU-Boulder study shows that an asteroid believed to have smacked Earth some 66 million years ago likely caused a global firestorm that led to extensive plant and animal extinctions.

Credit: Illustration courtesy NASA/JPL

Led by Douglas Robertson of the Cooperative Institute for Research in Environmental Sciences, or CIRES, the team used models that show the collision would have vaporized huge amounts of rock that were then blown high above Earth's atmosphere. The re-entering ejected material would have heated the upper atmosphere enough to glow red for several hours at roughly 2,700 degrees Fahrenheit -- about the temperature of an oven broiler element -- killing every living thing not sheltered underground or underwater.

The CU-led team developed an alternate explanation for the fact that there is little charcoal found at the Cretaceous-Paleogene, or K-Pg, boundary some 66 million years ago when the asteroid struck Earth and the cataclysmic fires are believed to have occurred. The CU researchers found that similar studies had corrected their data for changing sedimentation rates. When the charcoal data were corrected for the same changing sedimentation rates they show an excess of charcoal, not a deficiency, Robertson said.

"Our data show the conditions back then are consistent with widespread fires across the planet," said Robertson, a research scientist at CIRES, which is a joint institute of CU-Boulder and the National Oceanic and Atmospheric Administration. "Those conditions resulted in 100 percent extinction rates for about 80 percent of all life on Earth."

A paper on the subject was published online this week in the Journal of Geophysical Research-Biogeosciences, a publication of the American Geophysical Union. Co-authors on the study include CIRES Interim Director William Lewis, CU Professor Brian Toon of the atmospheric and oceanic sciences department and the Laboratory for Atmospheric and Space Physics and Peter Sheehan of the Milwaukee Public Museum in Wisconsin.

Geological evidence indicates the asteroid collided with Earth about 66 million years ago and carved the Chicxulub crater in Mexico's Yucatan Peninsula that is more than 110 miles in diameter. In 2010, experts from 33 institutions worldwide issued a report that concluded the impact at Chicxulub triggered mass extinctions, including dinosaurs, at the K-Pg boundary.

The conditions leading to the global firestorm were set up by the vaporization of rock following the impact, which condensed into sand-grain-sized spheres as they rose above the atmosphere. As the ejected material re-entered Earth's atmosphere, it dumped enough heat in the upper atmosphere to trigger an infrared "heat pulse" so hot it caused the sky to glow red for several hours, even though part of the radiation was blocked from Earth by the falling material, he said.

But there was enough infrared radiation from the upper atmosphere that reached Earth's surface to create searing conditions that likely ignited tinder, including dead leaves and pine needles. If a person was on Earth back then, it would have been like sitting in a broiler oven for two or three hours, said Robertson.

The amount of energy created by the infrared radiation the day of the asteroid-Earth collision is mind-boggling, said Robertson. "It's likely that the total amount of infrared heat was equal to a 1 megaton bomb exploding every four miles over the entire Earth."

A 1-megaton hydrogen bomb has about the same explosive power as 80 Hiroshima-type nuclear bombs, he said. The asteroid-Earth collision is thought to have generated about 100 million megatons of energy, said Robertson.

Some researchers have suggested that a layer of soot found at the K-Pg boundary layer roughly 66 million years ago was created by the impact itself. But Robertson and his colleagues calculated that the amount of soot was too high to have been created during the massive impact event and was consistent with the amount that would be expected from global fires.

Douglas Robertson, 303-682-2478
Douglas.robertson@colorado.edu
Jim Scott, CU-Boulder media relations, 303-492-3114
Jim.Scott@colorad

Douglas Robertson | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>