Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU, Old Dominion team finds sea level rise in western tropical Pacific anthropogenic

21.07.2014

Sea rise off coasts of Philippines, northeastern Australia rising at about 1 centimeter per year

A new study led by Old Dominion University and the University of Colorado Boulder indicates sea levels likely will continue to rise in the tropical Pacific Ocean off the coasts of the Philippines and northeastern Australia as humans continue to alter the climate.

The study authors combined past sea level data gathered from both satellite altimeters and traditional tide gauges as part of the study. The goal was to find out how much a naturally occurring climate phenomenon called the Pacific Decadal Oscillation, or PDO, influences sea rise patterns in the Pacific, said Assistant Professor Benjamin Hamlington of Old Dominion University in Norfolk, Va., a former CU-Boulder postdoctoral researcher and lead study author.

The PDO is a temperature pattern in the Pacific Ocean akin to El Niño but which lasts roughly 20 to 30 years and contributes significantly to the decadal trends in regional and global sea level, said CU-Boulder Research Professor Robert Leben, a study co-author. The research team performed sea level reconstructions going back to 1950 by fitting patterns of satellite altimeter data to tide gauge data, then stripped away the effects of the PDO to better understand its influence on current sea level increases in the Pacific.

"The conventional wisdom has been that if the Pacific Decadal Oscillation was removed from the equation this sea level rise in parts of the Pacific would disappear," said Hamlington, who received his doctorate from CU-Boulder. "But we found that sea level rise off the coasts of the Philippines and northeastern Australia appear to be anthropogenic and would continue even without this oscillation."

A paper on the subject was published online in the July 20 issue of Nature Climate Change. Other co-authors on the study included CU-Boulder doctoral student Matthew Strassburg, CU-Boulder Associate Professor Weiqing Han, CU-Boulder Professor R. Steven Nerem and Seoul National University faculty member K.Y. Kim. The study was funded primarily by NASA and the National Science Foundation.

The team also used NASA climate models to assess sea level rise in the tropical Pacific that included data on the warming tropical Indian Ocean, which has been shown in previous studies to be caused by increases in greenhouse gases. The climate modeling portion of the new study also showed sea level rise near the Philippines and Australia is caused at least in part by anthropogenic, or human-caused, warming said Hamlington, who got his doctorate under Leben.

The research team estimated that areas of the ocean near the Philippines and northeast Australia are being raised by about 1 centimeter per year due to anthropogenic warming, which can increase the intensity of severe weather. "When water starts piling up there and typhoon-like storms are traveling over higher sea levels, it can be a bad situation," said Hamlington.

Although global sea level patterns are not geographically uniform -- sea level rise in some areas correlate with sea level fall in other areas -- the average current global sea level rise is roughly 3 millimeters per year. Some scientists are estimating global seas may rise by a meter or more by the end of the century as a result of greenhouse warming.

"When the current PDO switches from its warm phase to its cool phase sea levels on the western coast of North America likely will rise," said Leben of CU-Boulder's aerospace engineering sciences department. "I think the PDO has been suppressing sea level there for the past 20 or 30 years."

In a broader sense, the new study shows that scientists may be able to look at other regions of the world's oceans and extract the natural climate variability in order to measure human-caused effects, said Hamlington, a researcher at CU-Boulder's Cooperative Institute for Research in Environmental Sciences. "This kind of research may start revealing patterns that we might not expect."

Most of the satellite altimeter data for the study came from NASA's Topex-Poseidon and Jason satellite series missions. Satellite altimetry measures sea level rise by bouncing radar pulses off the surface of the ocean at particular points and calculating the round-trip time it takes the pulse to return to the spacecraft said Leben, also a faculty member of CU-Boulder's Colorado Center for Astrodynamics Research, or CCAR.

A 2010 study led by CU-Boulder's Han published in Nature Geoscience concluded that greenhouse gases were responsible for rising seas in parts of the Indian Ocean. The changes are believed to be at least partially a result of the roughly 1 degree Fahrenheit increase in the Indo-Pacific warm pool -- an enormous, bathtub-shaped area stretching from the east coast of Africa to the International Date Line in the Pacific -- during the past 50 years.

###

For more information on CU-Boulder's aerospace engineering sciences department visit http://www.colorado.edu/aerospace/. For more information on CCAR visit http://www.colorado.edu/aerospace/research/colorado-center-astrodynamics-research. For more information on CIRES visit http://cires.colorado.edu/index.html.

-CU-

Contact:

Benjamin Hamlington, 303-735-0483
benjamin.hamlington@colorado.edu

Robert Leben, 303-492-4113
robert.leben@colorado.edu

Jim Scott, CU-Boulder media relations, 303-492-3114
jim.scott@colorado.edu

Robert Leben | Eurek Alert!

Further reports about: El Niño Pacific greenhouse rise satellite sea level tropical

More articles from Earth Sciences:

nachricht In the Southern Ocean, a carbon-dioxide mystery comes clear
04.02.2016 | The Earth Institute at Columbia University

nachricht Several metre thick ice cocktail beneath coastal Antarctic sea ice
04.02.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>