Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU, Old Dominion team finds sea level rise in western tropical Pacific anthropogenic

21.07.2014

Sea rise off coasts of Philippines, northeastern Australia rising at about 1 centimeter per year

A new study led by Old Dominion University and the University of Colorado Boulder indicates sea levels likely will continue to rise in the tropical Pacific Ocean off the coasts of the Philippines and northeastern Australia as humans continue to alter the climate.

The study authors combined past sea level data gathered from both satellite altimeters and traditional tide gauges as part of the study. The goal was to find out how much a naturally occurring climate phenomenon called the Pacific Decadal Oscillation, or PDO, influences sea rise patterns in the Pacific, said Assistant Professor Benjamin Hamlington of Old Dominion University in Norfolk, Va., a former CU-Boulder postdoctoral researcher and lead study author.

The PDO is a temperature pattern in the Pacific Ocean akin to El Niño but which lasts roughly 20 to 30 years and contributes significantly to the decadal trends in regional and global sea level, said CU-Boulder Research Professor Robert Leben, a study co-author. The research team performed sea level reconstructions going back to 1950 by fitting patterns of satellite altimeter data to tide gauge data, then stripped away the effects of the PDO to better understand its influence on current sea level increases in the Pacific.

"The conventional wisdom has been that if the Pacific Decadal Oscillation was removed from the equation this sea level rise in parts of the Pacific would disappear," said Hamlington, who received his doctorate from CU-Boulder. "But we found that sea level rise off the coasts of the Philippines and northeastern Australia appear to be anthropogenic and would continue even without this oscillation."

A paper on the subject was published online in the July 20 issue of Nature Climate Change. Other co-authors on the study included CU-Boulder doctoral student Matthew Strassburg, CU-Boulder Associate Professor Weiqing Han, CU-Boulder Professor R. Steven Nerem and Seoul National University faculty member K.Y. Kim. The study was funded primarily by NASA and the National Science Foundation.

The team also used NASA climate models to assess sea level rise in the tropical Pacific that included data on the warming tropical Indian Ocean, which has been shown in previous studies to be caused by increases in greenhouse gases. The climate modeling portion of the new study also showed sea level rise near the Philippines and Australia is caused at least in part by anthropogenic, or human-caused, warming said Hamlington, who got his doctorate under Leben.

The research team estimated that areas of the ocean near the Philippines and northeast Australia are being raised by about 1 centimeter per year due to anthropogenic warming, which can increase the intensity of severe weather. "When water starts piling up there and typhoon-like storms are traveling over higher sea levels, it can be a bad situation," said Hamlington.

Although global sea level patterns are not geographically uniform -- sea level rise in some areas correlate with sea level fall in other areas -- the average current global sea level rise is roughly 3 millimeters per year. Some scientists are estimating global seas may rise by a meter or more by the end of the century as a result of greenhouse warming.

"When the current PDO switches from its warm phase to its cool phase sea levels on the western coast of North America likely will rise," said Leben of CU-Boulder's aerospace engineering sciences department. "I think the PDO has been suppressing sea level there for the past 20 or 30 years."

In a broader sense, the new study shows that scientists may be able to look at other regions of the world's oceans and extract the natural climate variability in order to measure human-caused effects, said Hamlington, a researcher at CU-Boulder's Cooperative Institute for Research in Environmental Sciences. "This kind of research may start revealing patterns that we might not expect."

Most of the satellite altimeter data for the study came from NASA's Topex-Poseidon and Jason satellite series missions. Satellite altimetry measures sea level rise by bouncing radar pulses off the surface of the ocean at particular points and calculating the round-trip time it takes the pulse to return to the spacecraft said Leben, also a faculty member of CU-Boulder's Colorado Center for Astrodynamics Research, or CCAR.

A 2010 study led by CU-Boulder's Han published in Nature Geoscience concluded that greenhouse gases were responsible for rising seas in parts of the Indian Ocean. The changes are believed to be at least partially a result of the roughly 1 degree Fahrenheit increase in the Indo-Pacific warm pool -- an enormous, bathtub-shaped area stretching from the east coast of Africa to the International Date Line in the Pacific -- during the past 50 years.

###

For more information on CU-Boulder's aerospace engineering sciences department visit http://www.colorado.edu/aerospace/. For more information on CCAR visit http://www.colorado.edu/aerospace/research/colorado-center-astrodynamics-research. For more information on CIRES visit http://cires.colorado.edu/index.html.

-CU-

Contact:

Benjamin Hamlington, 303-735-0483
benjamin.hamlington@colorado.edu

Robert Leben, 303-492-4113
robert.leben@colorado.edu

Jim Scott, CU-Boulder media relations, 303-492-3114
jim.scott@colorado.edu

Robert Leben | Eurek Alert!

Further reports about: El Niño Pacific greenhouse rise satellite sea level tropical

More articles from Earth Sciences:

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

nachricht Rutgers scientists help create world's largest coral gene database
24.05.2016 | Rutgers University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>