Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New CU-NOAA monitoring system clarifies murky atmospheric questions

20.04.2012
A University of Colorado Boulder-led team has developed a new monitoring system to analyze and compare emissions from man-made fossil fuels and trace gases in the atmosphere, a technique that likely could be used to monitor the effectiveness of measures regulating greenhouse gases.

The research team looked at atmospheric gas measurements taken every two weeks from aircraft over a six-year period over the northeast United States to collect samples of CO2 and other environmentally important gases.

Their method allowed them to separate CO2 derived from fossil fuels from CO2 being emitted by biological sources like plant respiration, said CU-Boulder Senior Research Associate Scott Lehman, who led the study with CU-Boulder Research Associate John Miller.

The separation was made possible by the fact that CO2 released from the burning of fossil fuels like coal, oil and gas has no carbon-14, since the half-life of that carbon radio isotope is about 5,700 years -- far less than the age of fossil fuels, which are millions of years old. In contrast, CO2 emitted from biological sources on Earth like plants is relatively rich in carbon-14 and the difference can be pinpointed by atmospheric scientists, said Lehman of CU's Institute of Arctic and Alpine Research.

The team also measured concentrations of 22 other atmospheric gases tied to human activities as part of the study, said Miller of the CU-headquartered Cooperative Institute for Research in Environmental Sciences. The diverse set of gases impact climate change, air quality and the recovery of the ozone layer, but their emissions are poorly understood. The authors used the ratio between the concentration level of each gas in the atmosphere and that of fossil fuel-derived CO2 to estimate the emission rates of the individual gases, said Miller.

In the long run, measuring carbon-14 in the atmosphere offers the possibility to directly measure country and state emissions of fossil fuel CO2, said Miller. The technique would be an improvement over traditional, "accounting-based" methods of estimating emission rates of CO2 and other gases, which generally rely on reports from particular countries or regions regarding the use of coal, oil and natural gas, he said.

"While the accounting-based approach is probably accurate at global scales, the uncertainties rise for smaller-scale regions," said Miller, also a scientist at the National Oceanic and Atmospheric Administration's Earth System Research Laboratory in Boulder. "And as CO2 emissions targets become more widespread, there may be a greater temptation to underreport. But we'll be able to see through that."

A paper on the subject was published in the April 19 issue of the Journal of Geophysical Research: Atmospheres, published by the American Geophysical Union. Co-authors include Stephen Montzka and Ed Dlugokencky of NOAA, Colm Sweeney, Benjamin Miller, Anna Karion, Jocelyn Turnbull and Pieter Tans of NOAA and CIRES, Chad Wolak of CU's INSTAAR and John Southton of the University of California, Irvine.

One surprise in the study was that the researchers detected continued emissions of methyl chloroform and several other gases banned from production in the United States. Such observations emphasize the importance of independent monitoring, since the detection of such emissions could be overlooked by the widely used accounting-based estimation techniques, said Montzka.

The atmospheric air samples were taken every two weeks for six years by aircraft off the coastlines of Cape May, N.J., and Portsmouth, N.H.

Fossil fuel emissions have driven Earth's atmospheric CO2 from concentrations of about 280 parts per million in the early 1800s to about 390 parts per million today, said Miller. The vast majority of climate scientists believe higher concentrations of the greenhouse gas CO2 in Earth's atmosphere are directly leading to rising temperatures on the planet.

"We think the approach offered by this study can increase the accuracy of emissions detection and verification for fossil fuel combustion and a host of other man-made gases," said Lehman. He said the approach of using carbon-14 has been supported by the National Academy of Sciences and could be an invaluable tool for monitoring greenhouse gases by federal agencies like NOAA.

Unfortunately, NOAA's greenhouse gas monitoring program has been cut back by Congress in recent years, said Lehman. "Even if we lack the will to regulate emissions, the public has a right to know what is happening to our atmosphere. Sticking our heads in the sand is not a sound strategy," he said.

Scott Lehman | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>