Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New CU-NOAA monitoring system clarifies murky atmospheric questions

A University of Colorado Boulder-led team has developed a new monitoring system to analyze and compare emissions from man-made fossil fuels and trace gases in the atmosphere, a technique that likely could be used to monitor the effectiveness of measures regulating greenhouse gases.

The research team looked at atmospheric gas measurements taken every two weeks from aircraft over a six-year period over the northeast United States to collect samples of CO2 and other environmentally important gases.

Their method allowed them to separate CO2 derived from fossil fuels from CO2 being emitted by biological sources like plant respiration, said CU-Boulder Senior Research Associate Scott Lehman, who led the study with CU-Boulder Research Associate John Miller.

The separation was made possible by the fact that CO2 released from the burning of fossil fuels like coal, oil and gas has no carbon-14, since the half-life of that carbon radio isotope is about 5,700 years -- far less than the age of fossil fuels, which are millions of years old. In contrast, CO2 emitted from biological sources on Earth like plants is relatively rich in carbon-14 and the difference can be pinpointed by atmospheric scientists, said Lehman of CU's Institute of Arctic and Alpine Research.

The team also measured concentrations of 22 other atmospheric gases tied to human activities as part of the study, said Miller of the CU-headquartered Cooperative Institute for Research in Environmental Sciences. The diverse set of gases impact climate change, air quality and the recovery of the ozone layer, but their emissions are poorly understood. The authors used the ratio between the concentration level of each gas in the atmosphere and that of fossil fuel-derived CO2 to estimate the emission rates of the individual gases, said Miller.

In the long run, measuring carbon-14 in the atmosphere offers the possibility to directly measure country and state emissions of fossil fuel CO2, said Miller. The technique would be an improvement over traditional, "accounting-based" methods of estimating emission rates of CO2 and other gases, which generally rely on reports from particular countries or regions regarding the use of coal, oil and natural gas, he said.

"While the accounting-based approach is probably accurate at global scales, the uncertainties rise for smaller-scale regions," said Miller, also a scientist at the National Oceanic and Atmospheric Administration's Earth System Research Laboratory in Boulder. "And as CO2 emissions targets become more widespread, there may be a greater temptation to underreport. But we'll be able to see through that."

A paper on the subject was published in the April 19 issue of the Journal of Geophysical Research: Atmospheres, published by the American Geophysical Union. Co-authors include Stephen Montzka and Ed Dlugokencky of NOAA, Colm Sweeney, Benjamin Miller, Anna Karion, Jocelyn Turnbull and Pieter Tans of NOAA and CIRES, Chad Wolak of CU's INSTAAR and John Southton of the University of California, Irvine.

One surprise in the study was that the researchers detected continued emissions of methyl chloroform and several other gases banned from production in the United States. Such observations emphasize the importance of independent monitoring, since the detection of such emissions could be overlooked by the widely used accounting-based estimation techniques, said Montzka.

The atmospheric air samples were taken every two weeks for six years by aircraft off the coastlines of Cape May, N.J., and Portsmouth, N.H.

Fossil fuel emissions have driven Earth's atmospheric CO2 from concentrations of about 280 parts per million in the early 1800s to about 390 parts per million today, said Miller. The vast majority of climate scientists believe higher concentrations of the greenhouse gas CO2 in Earth's atmosphere are directly leading to rising temperatures on the planet.

"We think the approach offered by this study can increase the accuracy of emissions detection and verification for fossil fuel combustion and a host of other man-made gases," said Lehman. He said the approach of using carbon-14 has been supported by the National Academy of Sciences and could be an invaluable tool for monitoring greenhouse gases by federal agencies like NOAA.

Unfortunately, NOAA's greenhouse gas monitoring program has been cut back by Congress in recent years, said Lehman. "Even if we lack the will to regulate emissions, the public has a right to know what is happening to our atmosphere. Sticking our heads in the sand is not a sound strategy," he said.

Scott Lehman | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Earlier flowering of modern winter wheat cultivars

20.03.2018 | Agricultural and Forestry Science

Smithsonian researchers name new ocean zone: The rariphotic

20.03.2018 | Life Sciences

Molecular doorstop could be key to new tuberculosis drugs

20.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>