Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU-Boulder study shows 53-million-year-old high Arctic mammals wintered in darkness

03.06.2009
Ancestors of tapirs and ancient cousins of rhinos living above the Arctic Circle 53 million years ago endured six months of darkness each year in a far milder climate than today that featured lush, swampy forests, according to a new study led by the University of Colorado at Boulder.

CU-Boulder Assistant Professor Jaelyn Eberle said the study shows several varieties of prehistoric mammals as heavy as 1,000 pounds each lived on what is today Ellesmere Island near Greenland on a summer diet of flowering plants, deciduous leaves and aquatic vegetation.

But in winter's twilight they apparently switched over to foods like twigs, leaf litter, evergreen needles and fungi, said Eberle, curator of fossil vertebrates at the University of Colorado Museum of Natural History and chief study author.

The study has implications for the dispersal of early mammals across polar land bridges into North America and for modern mammals that likely will begin moving north if Earth's climate continues to warm. A paper on the subject co-authored by Henry Fricke of Colorado College in Colorado Springs and John Humphrey of the Colorado School of Mines in Golden appears in the June issue of Geology.

The team used an analysis of carbon and oxygen isotopes extracted from the fossil teeth of three varieties of mammals from Ellesmere Island -- a hippo-like, semi-aquatic creature known as Coryphodon, a second, smaller ancestor of today's tapirs and a third rhino-like mammal known as brontothere. Animal teeth are among the most valuable fossils in the high Arctic because they are extremely hard and better able to survive the harsh freeze-thaw cycles that occur each year, Eberle said.

Telltale isotopic signatures of carbon from enamel layers that form sequentially during tooth eruption allowed the team to pinpoint the types of plant materials consumed by the mammals as they ate their way across the landscape through the seasons, Eberle said.

"We were able to use carbon signatures preserved in the tooth enamel to show that these mammals did not migrate or hibernate," said Eberle. "Instead, they lived in the high Arctic all year long, munching on some unusual things during the dark winter months." The study was funded by the National Science Foundation.

An analysis of oxygen isotopes from the fossil teeth helped determine seasonal changes in surface drinking water tied to precipitation and temperature, providing additional climate information, said Eberle. The results point to warm, humid summers and mild winters in the high Arctic 53 million years ago, where temperatures probably ranged from just above freezing to near 70 degrees Fahrenheit, Eberle said.

The environment on central Ellesmere Island, located at about 80 degrees north latitude, was part of a much larger circumpolar Arctic region at the time, she said. It probably was similar to swampy cypress forests in the southeast United States today and still contains fossil tree stumps as large as washing machines, Eberle said.

On central Ellesmere Island in today's high Arctic -- a polar desert that features tundra, permafrost, ice sheets, sparse vegetation and a few small mammals -- the temperature ranges from roughly minus 37 degrees F in winter to 48 degrees F in summer and is the coldest, driest environment on Earth. There is no sunlight in the high Arctic between October and February, and the midnight sun is present from mid-April through the end of August.

The year-round presence of mammals such as the hippo-like Coryphodon, tapirs and brontotheres in the high Arctic was a "behavioral prerequisite" for their eventual dispersal across high-latitude land bridges that geologists believe linked Asia and Europe with North America, Eberle said. Their dietary chemical signatures, portly shapes and fossil evidence for babies and juveniles in the Arctic preclude the idea of long, seasonal migrations to escape the winter darkness, she said.

"In order for mammals to have covered the great distances across land bridges that once connected the continents, they would have required the ability to inhabit the High Arctic year-round in proximity to these land bridges," Eberle said.

Instead, the animals likely made their way south from the Arctic in minute increments over millions of years as the climate shifted. "This study may provide the behavioral smoking gun for how modern groups of mammals like ungulates -- ancestors of today's horses and cattle -- and true primates arrived in North America," said Eberle, also an assistant professor in CU-Boulder's geological sciences department.

The surprising menagerie of Arctic creatures during the early Eocene epoch, which lasted from roughly 50 million to 55 million years ago, first became evident in 1975 when a team led by Mary Dawson of the Carnegie Museum of Natural History in Pittsburg discovered fossil alligator jaw bones. Since then, fossils of aquatic turtles, giant tortoises, snakes and even flying lemurs -- one of the earliest forms of primates -- have been found on Ellesmere Island, said Eberle.

The new Geology study also foreshadows the impacts of continuing global warming on Arctic plants and animals, Eberle said. Temperatures in the Arctic are rising twice as fast as those at mid-latitudes as greenhouse gases build up in Earth's atmosphere from rising fossil-fuel burning, and air temperatures over Greenland have risen by more than 7 degrees F since 1991, according to climate scientists.

"We are hypothesizing that lower-latitude mammals will migrate north as the temperatures warm in the coming centuries and millennia," she said. If temperatures ever warm enough in the future to rival the Eocene, there is the possibility of new intercontinental migrations by mammals."

Because the oldest known tapir fossils are from the Arctic, there is the possibility that some prehistoric mammals could have evolved in the circumpolar Arctic and then dispersed through Asia, Europe and North America, said Eberle. "We may have to re-think the world of the early Eocene, when all of the Arctic land masses were connected in a supercontinent of sorts," she said.

Jaelyn Eberle | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>