Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU-Boulder study shows 53-million-year-old high Arctic mammals wintered in darkness

03.06.2009
Ancestors of tapirs and ancient cousins of rhinos living above the Arctic Circle 53 million years ago endured six months of darkness each year in a far milder climate than today that featured lush, swampy forests, according to a new study led by the University of Colorado at Boulder.

CU-Boulder Assistant Professor Jaelyn Eberle said the study shows several varieties of prehistoric mammals as heavy as 1,000 pounds each lived on what is today Ellesmere Island near Greenland on a summer diet of flowering plants, deciduous leaves and aquatic vegetation.

But in winter's twilight they apparently switched over to foods like twigs, leaf litter, evergreen needles and fungi, said Eberle, curator of fossil vertebrates at the University of Colorado Museum of Natural History and chief study author.

The study has implications for the dispersal of early mammals across polar land bridges into North America and for modern mammals that likely will begin moving north if Earth's climate continues to warm. A paper on the subject co-authored by Henry Fricke of Colorado College in Colorado Springs and John Humphrey of the Colorado School of Mines in Golden appears in the June issue of Geology.

The team used an analysis of carbon and oxygen isotopes extracted from the fossil teeth of three varieties of mammals from Ellesmere Island -- a hippo-like, semi-aquatic creature known as Coryphodon, a second, smaller ancestor of today's tapirs and a third rhino-like mammal known as brontothere. Animal teeth are among the most valuable fossils in the high Arctic because they are extremely hard and better able to survive the harsh freeze-thaw cycles that occur each year, Eberle said.

Telltale isotopic signatures of carbon from enamel layers that form sequentially during tooth eruption allowed the team to pinpoint the types of plant materials consumed by the mammals as they ate their way across the landscape through the seasons, Eberle said.

"We were able to use carbon signatures preserved in the tooth enamel to show that these mammals did not migrate or hibernate," said Eberle. "Instead, they lived in the high Arctic all year long, munching on some unusual things during the dark winter months." The study was funded by the National Science Foundation.

An analysis of oxygen isotopes from the fossil teeth helped determine seasonal changes in surface drinking water tied to precipitation and temperature, providing additional climate information, said Eberle. The results point to warm, humid summers and mild winters in the high Arctic 53 million years ago, where temperatures probably ranged from just above freezing to near 70 degrees Fahrenheit, Eberle said.

The environment on central Ellesmere Island, located at about 80 degrees north latitude, was part of a much larger circumpolar Arctic region at the time, she said. It probably was similar to swampy cypress forests in the southeast United States today and still contains fossil tree stumps as large as washing machines, Eberle said.

On central Ellesmere Island in today's high Arctic -- a polar desert that features tundra, permafrost, ice sheets, sparse vegetation and a few small mammals -- the temperature ranges from roughly minus 37 degrees F in winter to 48 degrees F in summer and is the coldest, driest environment on Earth. There is no sunlight in the high Arctic between October and February, and the midnight sun is present from mid-April through the end of August.

The year-round presence of mammals such as the hippo-like Coryphodon, tapirs and brontotheres in the high Arctic was a "behavioral prerequisite" for their eventual dispersal across high-latitude land bridges that geologists believe linked Asia and Europe with North America, Eberle said. Their dietary chemical signatures, portly shapes and fossil evidence for babies and juveniles in the Arctic preclude the idea of long, seasonal migrations to escape the winter darkness, she said.

"In order for mammals to have covered the great distances across land bridges that once connected the continents, they would have required the ability to inhabit the High Arctic year-round in proximity to these land bridges," Eberle said.

Instead, the animals likely made their way south from the Arctic in minute increments over millions of years as the climate shifted. "This study may provide the behavioral smoking gun for how modern groups of mammals like ungulates -- ancestors of today's horses and cattle -- and true primates arrived in North America," said Eberle, also an assistant professor in CU-Boulder's geological sciences department.

The surprising menagerie of Arctic creatures during the early Eocene epoch, which lasted from roughly 50 million to 55 million years ago, first became evident in 1975 when a team led by Mary Dawson of the Carnegie Museum of Natural History in Pittsburg discovered fossil alligator jaw bones. Since then, fossils of aquatic turtles, giant tortoises, snakes and even flying lemurs -- one of the earliest forms of primates -- have been found on Ellesmere Island, said Eberle.

The new Geology study also foreshadows the impacts of continuing global warming on Arctic plants and animals, Eberle said. Temperatures in the Arctic are rising twice as fast as those at mid-latitudes as greenhouse gases build up in Earth's atmosphere from rising fossil-fuel burning, and air temperatures over Greenland have risen by more than 7 degrees F since 1991, according to climate scientists.

"We are hypothesizing that lower-latitude mammals will migrate north as the temperatures warm in the coming centuries and millennia," she said. If temperatures ever warm enough in the future to rival the Eocene, there is the possibility of new intercontinental migrations by mammals."

Because the oldest known tapir fossils are from the Arctic, there is the possibility that some prehistoric mammals could have evolved in the circumpolar Arctic and then dispersed through Asia, Europe and North America, said Eberle. "We may have to re-think the world of the early Eocene, when all of the Arctic land masses were connected in a supercontinent of sorts," she said.

Jaelyn Eberle | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>