Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Crystals improve understanding of volcanic eruption triggers

Scientists have exploited crystals from lavas to unravel the records of volcanic eruptions.

The team, from Durham University and the University of Leeds, studied crystal formation from a volcano, in Santorini, in Greece, to calculate the timescale between the trigger of volcanic activity and the volcano's eruption.

They say the technique can be applied to other volcanoes – such as Vesuvius, near Naples, in Italy – and will help inform the decisions of civil defence agencies.

Worldwide, it is estimated that between 50 and 70 volcanoes erupt each year, but due to the long gaps between eruptions at most volcanoes it is hard to understand how any individual volcano behaves. This work allows scientists to better understand this behaviour.

The research, funded by the Natural Environment Research Council (NERC), is published this week in the prestigious scientific journal Science.

The scientists looked at crystals from the 1925-28 eruption of Nea Kameni, in Santorini.

Lead author Dr Victoria Martin, of Durham University, showed that the crystal rims reacted with molten rock, or magma, as it moved into the volcano's shallow chamber prior to eruption. This process is thought to be associated with shallow level earthquake activity, as shown by modern volcano monitoring.

By studying the area between the crystal core and the rim the team then worked out how long the rims had existed – revealing how long the magma was in the shallow chamber before it erupted.

The crystals showed the 1925-28 eruption at Nea Kameni took place three to ten weeks after the magma entered the shallow system.

As magma movement typically causes seismic activity, if any future seismic or inflation activity at Nea Kameni can be linked to magma recharge of the volcano, the scientists predict an eruption could follow within a similar timescale.

They hope this method can be applied to other volcanoes, allowing the pre-eruption behaviour to be better understood - and understanding of volcanoes to be extended back further in time.

Co-author Dr Dan Morgan, from the School of Earth and Environment, at the University of Leeds, said: "We hope to develop these techniques further and apply them to more volcanoes worldwide.

"Potentially, these techniques could extend our knowledge of volcanic recharge considerably, as they can be applied to material erupted before volcanic monitoring was commonplace."

Professor Jon Davidson, Chair of Earth Sciences at Durham University, said: "We hope that what we find in the crystals in terms of timescales can be linked with phenomena such as earthquakes

"If we can relate the timescales we measure to such events we may be able to say when we could expect a volcano to erupt.

"This is an exciting new method that will help us understand the timescales of fundamental volcanic processes driving eruptions."

Alex Thomas | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>