Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystals improve understanding of volcanic eruption triggers

01.09.2008
Scientists have exploited crystals from lavas to unravel the records of volcanic eruptions.

The team, from Durham University and the University of Leeds, studied crystal formation from a volcano, in Santorini, in Greece, to calculate the timescale between the trigger of volcanic activity and the volcano's eruption.

They say the technique can be applied to other volcanoes – such as Vesuvius, near Naples, in Italy – and will help inform the decisions of civil defence agencies.

Worldwide, it is estimated that between 50 and 70 volcanoes erupt each year, but due to the long gaps between eruptions at most volcanoes it is hard to understand how any individual volcano behaves. This work allows scientists to better understand this behaviour.

The research, funded by the Natural Environment Research Council (NERC), is published this week in the prestigious scientific journal Science.

The scientists looked at crystals from the 1925-28 eruption of Nea Kameni, in Santorini.

Lead author Dr Victoria Martin, of Durham University, showed that the crystal rims reacted with molten rock, or magma, as it moved into the volcano's shallow chamber prior to eruption. This process is thought to be associated with shallow level earthquake activity, as shown by modern volcano monitoring.

By studying the area between the crystal core and the rim the team then worked out how long the rims had existed – revealing how long the magma was in the shallow chamber before it erupted.

The crystals showed the 1925-28 eruption at Nea Kameni took place three to ten weeks after the magma entered the shallow system.

As magma movement typically causes seismic activity, if any future seismic or inflation activity at Nea Kameni can be linked to magma recharge of the volcano, the scientists predict an eruption could follow within a similar timescale.

They hope this method can be applied to other volcanoes, allowing the pre-eruption behaviour to be better understood - and understanding of volcanoes to be extended back further in time.

Co-author Dr Dan Morgan, from the School of Earth and Environment, at the University of Leeds, said: "We hope to develop these techniques further and apply them to more volcanoes worldwide.

"Potentially, these techniques could extend our knowledge of volcanic recharge considerably, as they can be applied to material erupted before volcanic monitoring was commonplace."

Professor Jon Davidson, Chair of Earth Sciences at Durham University, said: "We hope that what we find in the crystals in terms of timescales can be linked with phenomena such as earthquakes

"If we can relate the timescales we measure to such events we may be able to say when we could expect a volcano to erupt.

"This is an exciting new method that will help us understand the timescales of fundamental volcanic processes driving eruptions."

Alex Thomas | EurekAlert!
Further information:
http://www.durham.ac.uk

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>