Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Critical Minerals Ignite Geopolitical Storm

10.10.2011
The clean energy economy of the future hinges on a lot of things, chief among them the availability of the scores of rare earth minerals and other elements used to make everything from photovoltaic panels and cellphone displays to the permanent magnets in cutting edge new wind generators. And right out of the gate trouble is brewing over projected growth in demand for these minerals and the security of their supplies.

Last year, for instance, China restricted the export of neodymium, which is used in wind generators. The move was ostensibly to direct the supplies to toward a massive wind generation project within China. The effect, however, is to create a two-tiered price for neodymium: one inside China and another, higher price, for the rest of the world, explained economics professor Roderick Eggert of the Colorado School of Mines. The result could be that China not only will control the neodymium supply, but the manufacture of neodymium technology as well.

The geopolitical implications of critical minerals have started bringing together scientists, economists and policy makers who are trying to cut a path through the growing thicket of challenges. In that spirit, on Monday, October 10, 2011, Eggert and other professors will be presenting their research alongside high-level representatives from the U.S. Congress and Senate, the Office of the President of the U.S., the U.S. Geological Survey, in a session at the meeting of the Geological Society of America in Minneapolis.

Among the basics that need to be grasped to understand the current state of affairs is how rare these minerals and elements really are. Some are plentiful, but only found in rare places or are difficult to extract. Indium, for instance, is a byproduct of zinc mining and extraction. It is not economically viable to extract unless zinc is being sought in the same ore, Eggert explained, Others are just plain scarce, like rhenium and tellurium, which only exist in very small amounts in the Earth’s crust.

There are basically two responses to this sort of situation: use less of these minerals or improve the extraction of them from other ores in other parts of the world. The latter would seem to be where most people are heading.

“China’s efforts to restrict exports of mineral commodities garnered the attention of Congress and highlighted the need for the United States to assess the state of the Nation’s mineral policies and examine opportunities to produce rare earths and other strategic and critical minerals domestically,” reads the session abstract of Kathleen Benedetto of the Subcommittee on Energy and Mineral Resources, Committee on Natural Resources, U.S. House of Representatives. “Nine bills have been introduced in the House and Senate to address supply disruptions of rare earths and other important mineral commodities.”

Benedetto will be explaining the meaning and status of those bills, and what it will take to get them signed into law.

“Deposits of rare earth elements and other critical minerals occur throughout the Nation,” reads the abstract for another prominent session presenter: Marcia McNutt, director of the U.S. Geological Survey. She will be putting the current events in the larger historical perspective of mineral resource management, which has been the USGS’s job for more than 130 years. “The definition of ‘a critical mineral or material’ is extremely time dependent, as advances in materials science yield new products and the adoption of new technologies result in shifts in both supply and demand.”

The President’s Office of Science and Technology Policy has answered the call as well. Cyrus Wadia will be presenting a five-point strategy to begin addressing the matter. The first point is to mitigating long term risks associated with the use of critical materials. The second, diversify supplies of raw materials. Third, to promote a domestic supply chain for areas of strategic importance like clean energy. Fourth, inform decision makers; and fifth, prepare the workforce of the next generation.

Christa Stratton | EurekAlert!
Further information:
http://www.geosociety.org

Further reports about: Geological Geological Survey Geopolitical Mineral Ressource raw material

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>