Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracking the Ice Code

21.05.2013
What happened the last time a vegetated Earth shifted from an extremely cold climate to desert-like conditions? And what does it tell us about climate change today?

John Isbell is on a quest to coax that information from the geology of the southernmost portions of the Earth. It won’t be easy, because the last transition from “icehouse to greenhouse” occurred between 335 and 290 million years ago.

An expert in glaciation from the late Paleozoic Era, Isbell is challenging many assumptions about the way drastic climate change naturally unfolds. The research helps form the all-important baseline needed to predict what the added effects of human activity will bring.

Starting from ‘deep freeze’
In the late Paleozoic, the modern continents were fused together into two huge land masses, with what is now the Southern Hemisphere, including Antarctica, called Gondwana. During the span of more than 60 million years, Gondwana shifted from a state of deep freeze into one so hot and dry it supported the appearance of reptiles. The change, however, didn’t happen uniformly, Isbell says.

In fact, his research has shaken the common belief that Gondwana was covered by one massive sheet of ice which gradually and steadily melted away as conditions warmed.

Isbell has found that at least 22 individual ice sheets were located in various places over the region. And the state of glaciation during the long warming period was marked by dramatic swings in temperature and atmospheric carbon dioxide (CO2) levels.

“There appears to be a direct association between low CO2 levels and glaciation,” he says. “A lot of the changes in greenhouse gases and in a shrinking ice volume then are similar to what we’re seeing today.”

When the ice finally started disappearing, he says, it did so in the polar regions first and lingered in other parts of Gondwana with higher elevations. He attributes that to different conditions across Gondwana, such as mountain-building events, which would have preserved glaciers longer.

All about the carbon
To get an accurate picture of the range of conditions in the late Paleozoic, Isbell has traveled to Antarctica 16 times and has joined colleagues from around the world as part of an interdisciplinary team funded by the National Science Foundation. They have regularly gone to places where no one has ever walked on the rocks before.

One of his colleagues is paleoecologist Erik Gulbranson, who studies plant communities from the tail end of the Paleozoic and how they evolved in concert with the climatic changes. The information contained in fossil soil and plants, he says, can reveal a lot about carbon cycling, which is so central for applying the work to climate change today.

Documenting the particulars of how the carbon cycle behaved so long ago will allow them to answer questions like, ‘What was the main force behind glaciation during the late Paleozoic? Was it mountain-building or climate change?’

Another characteristic of the late Paleozoic shift is that once the climate warmed significantly and atmospheric CO2 levels soared, the Earth’s climate remained hot and dry for another 200 million years.

“These natural cycles are very long, and that’s an important difference with what we’re seeing with the contemporary global climate change,” says Gulbranson. “Today, we’re seeing change in greenhouse gas concentrations of CO2 on the order of centuries and decades.”

Ancient trees and soil
In order to explain today’s accelerated warming, Gulbranson’s research illustrates that glaciers alone don’t tell the whole story.

Many environmental factors leave an imprint on the carbon contained in tree trunks from this period. One of the things Gulbranson hypothesizes from his research in Antarctica is that an increase in deciduous trees occurred in higher latitudes during the late Paleozoic, driven by higher temperatures.

What he doesn’t yet know is what the net effect was on the carbon cycle.

While trees soak in CO2 and give off oxygen, there are other environmental processes to consider, says Gulbranson. For example, CO2 emissions also come from soil as microbes speed up their consumption of organic matter with rising temperatures.

“The high latitudes today contain the largest amount of carbon locked up as organic material and permafrost soils on Earth today,” he says. “It actually exceeds the amount of carbon you can measure in the rain forests. So what happens to that stockpile of carbon when you warm it and grow a forest over it is completely unknown.”

Another unknown is whether the Northern Hemisphere during this time was also glaciated and warming. The pair are about to find out. With UWM backing, they will do field work in northeastern Russia this summer to study glacial deposits from the late Paleozoic.

The two scientists’ work is complementary. Dating the rock is essential to pinpointing the rate of change in the carbon cycle, which would be the warning signal we could use today to indicate that nature is becoming dangerously unbalanced.

“If we figure out what happened with the glaciers,” says Isbell, “and add it to what we know about other conditions – we will be able to unlock the answers to climate change.”

John Isbell
Professor, Geosciences, UW-Milwaukee
414-229-2877
jisbell@uwm.edu

Professor John Isbell | Newswise
Further information:
http://www.uwm.edu

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
17.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New type of photosynthesis discovered

18.06.2018 | Life Sciences

New ID pictures of conducting polymers discover a surprise ABBA fan

18.06.2018 | Life Sciences

The car of the future – sleeper cars and travelling offices too?

18.06.2018 | Automotive Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>