Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracking the Ice Code

21.05.2013
What happened the last time a vegetated Earth shifted from an extremely cold climate to desert-like conditions? And what does it tell us about climate change today?

John Isbell is on a quest to coax that information from the geology of the southernmost portions of the Earth. It won’t be easy, because the last transition from “icehouse to greenhouse” occurred between 335 and 290 million years ago.

An expert in glaciation from the late Paleozoic Era, Isbell is challenging many assumptions about the way drastic climate change naturally unfolds. The research helps form the all-important baseline needed to predict what the added effects of human activity will bring.

Starting from ‘deep freeze’
In the late Paleozoic, the modern continents were fused together into two huge land masses, with what is now the Southern Hemisphere, including Antarctica, called Gondwana. During the span of more than 60 million years, Gondwana shifted from a state of deep freeze into one so hot and dry it supported the appearance of reptiles. The change, however, didn’t happen uniformly, Isbell says.

In fact, his research has shaken the common belief that Gondwana was covered by one massive sheet of ice which gradually and steadily melted away as conditions warmed.

Isbell has found that at least 22 individual ice sheets were located in various places over the region. And the state of glaciation during the long warming period was marked by dramatic swings in temperature and atmospheric carbon dioxide (CO2) levels.

“There appears to be a direct association between low CO2 levels and glaciation,” he says. “A lot of the changes in greenhouse gases and in a shrinking ice volume then are similar to what we’re seeing today.”

When the ice finally started disappearing, he says, it did so in the polar regions first and lingered in other parts of Gondwana with higher elevations. He attributes that to different conditions across Gondwana, such as mountain-building events, which would have preserved glaciers longer.

All about the carbon
To get an accurate picture of the range of conditions in the late Paleozoic, Isbell has traveled to Antarctica 16 times and has joined colleagues from around the world as part of an interdisciplinary team funded by the National Science Foundation. They have regularly gone to places where no one has ever walked on the rocks before.

One of his colleagues is paleoecologist Erik Gulbranson, who studies plant communities from the tail end of the Paleozoic and how they evolved in concert with the climatic changes. The information contained in fossil soil and plants, he says, can reveal a lot about carbon cycling, which is so central for applying the work to climate change today.

Documenting the particulars of how the carbon cycle behaved so long ago will allow them to answer questions like, ‘What was the main force behind glaciation during the late Paleozoic? Was it mountain-building or climate change?’

Another characteristic of the late Paleozoic shift is that once the climate warmed significantly and atmospheric CO2 levels soared, the Earth’s climate remained hot and dry for another 200 million years.

“These natural cycles are very long, and that’s an important difference with what we’re seeing with the contemporary global climate change,” says Gulbranson. “Today, we’re seeing change in greenhouse gas concentrations of CO2 on the order of centuries and decades.”

Ancient trees and soil
In order to explain today’s accelerated warming, Gulbranson’s research illustrates that glaciers alone don’t tell the whole story.

Many environmental factors leave an imprint on the carbon contained in tree trunks from this period. One of the things Gulbranson hypothesizes from his research in Antarctica is that an increase in deciduous trees occurred in higher latitudes during the late Paleozoic, driven by higher temperatures.

What he doesn’t yet know is what the net effect was on the carbon cycle.

While trees soak in CO2 and give off oxygen, there are other environmental processes to consider, says Gulbranson. For example, CO2 emissions also come from soil as microbes speed up their consumption of organic matter with rising temperatures.

“The high latitudes today contain the largest amount of carbon locked up as organic material and permafrost soils on Earth today,” he says. “It actually exceeds the amount of carbon you can measure in the rain forests. So what happens to that stockpile of carbon when you warm it and grow a forest over it is completely unknown.”

Another unknown is whether the Northern Hemisphere during this time was also glaciated and warming. The pair are about to find out. With UWM backing, they will do field work in northeastern Russia this summer to study glacial deposits from the late Paleozoic.

The two scientists’ work is complementary. Dating the rock is essential to pinpointing the rate of change in the carbon cycle, which would be the warning signal we could use today to indicate that nature is becoming dangerously unbalanced.

“If we figure out what happened with the glaciers,” says Isbell, “and add it to what we know about other conditions – we will be able to unlock the answers to climate change.”

John Isbell
Professor, Geosciences, UW-Milwaukee
414-229-2877
jisbell@uwm.edu

Professor John Isbell | Newswise
Further information:
http://www.uwm.edu

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>