Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corn syrup model splits Yellowstone's mantle plume in 2

15.07.2013
One of the greatest controversies in science is what's underneath the Yellowstone supervolcano.

The controversy surrounds a unique relationship between a mantle plume (like the one that powers Hawaiian volcanoes) and the subduction zone off the Washington-Oregon coast. Cutting-edge research using a common kitchen ingredient is explored in the latest issue of EARTH Magazine.

Recently published research explores this problem in 3-D, using a model created with corn syrup, fiberglass and a series of hydraulic pistons. What the scientists saw was a plume sliced in half by the subducting plate. Before this research, different scientific teams had only investigated the subducting tectonic plate or the mantle plume, but not both at the same time.

The resulting model of a bifurcated mantle plume potentially answers key questions about the Yellowstone supervolcano. Read about how these results impact volcano research in Washington, Oregon, Montana, Wyoming and the South Pacific in the July issue of EARTH Magazine: http://bit.ly/153lVat. For complete access – including to see the corn syrup apparatus subscribe to Earth Magazine at: http://www.earthmagazine.org/digital.

Don't miss the other great articles in the July issue of EARTH Magazine. Uncover ancient earthquake damage in a Roman Mausoleum, Arctic ozone depletion, and plankton growth caused by Icelandic volcanoes, all in this month's issue of EARTH, now available on the digital newsstand at http://www.earthmagazine.org/digital.

Keep up to date with the latest happenings in Earth, energy and the environment news with EARTH magazine online at http://www.earthmagazine.org/. Published by the American Geosciences Institute, EARTH is your source for the science behind the headlines.

The American Geosciences Institute is a nonprofit federation of geoscientific and professional associations that represents more than 250,000 geologists, geophysicists and other earth scientists. Founded in 1948, AGI provides information services to geoscientists, serves as a voice of shared interests in the profession, plays a major role in strengthening geosciences education, and strives to increase public awareness of the vital role geosciences play in society's use of resources, resiliency to natural hazards .

Megan Sever | EurekAlert!
Further information:
http://www.earthmagazine.org

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>