Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Cores from Glacier in the Eastern European Alps May Yield New Climate Clues

11.01.2012
Researchers are beginning their analysis of what are probably the first successful ice cores drilled to bedrock from a glacier in the eastern European Alps.

With luck, that analysis will yield a record of past climate and environmental changes in the region for several centuries, and perhaps even covering the last 1,000 years. Scientists also hope that the core contains the remnants of early human activity in the region, such as the atmospheric byproducts of smelting metals.

The project, led by a team of Ohio State University scientists and their European colleagues, retrieved four cores from a glacier high atop Mount Ortles, a 3,905-meter (12,812-feet) peak in northeastern Italy. Three were 75 meters long (246-feet) and one was 60 meters (197 feet). They are significant in two ways:

First, scientists had previously believed that the glacier was at too low an altitude to contain ice cold enough to have preserved a clear climate record.

While the top one-third of the cores do show that melt water had percolated downwards, possibly affecting the record, the remaining two-thirds of the cores contained unaltered ice from which the research team should be able to retrieve a climate history.

Secondly, since no other ice core analyses have been retrieved from the eastern side of the Alps, this work should paint a much clearer picture of climate change in this portion of Europe.

“This glacier is already changing from the top down in a very irreversible way,” explained expedition leader Paolo Gabrielli, a research scientist at Ohio State’s Byrd Polar Research Center. “It is changing from a ‘cold’ glacier where the ice is stable to a ‘temperate’ glacier where the ice can degrade.

“The entire glacier may transition to a temperate state within the next decade or so,” he said. That probable change made the retrieval of these cores now even more important so that the ice record won’t be lost for future research.

Gabrielli said that previous research has shown already that there is an increase in summer temperatures at high elevations in the region of up to 2 degrees C (3.6 degrees F) over the last three decades. In spite of the melting in the top parts of the cores, the researchers hope to find a record that begins in the 1980s and proceeds back several centuries, or perhaps more.

Based on weather patterns, ice in the cores that was formed during past summers will likely paint a picture of past climate in an area close to the mountain, perhaps only 10 to 100 kilometers (6.21 to 62.1 miles) away.

But ice formed during past winters should provide clues to a much wider area, Gabrielli said, perhaps as much as 1,000 kilometers (621 miles).

An analysis of the ice might also answer some important questions about the region, such as the climate change in the region during the transition between the Medieval Warm Period and the Little Ice Age.

The research team, with co-leader Lonnie Thompson, Distinguished Professor of Earth Sciences at Ohio State, spent two weeks on the glacier, drilling the four cores. Along with him, Victor Zagorodnov, also from Ohio State, worked on the project.

Other team members included researchers from the University of Venice, the Russian Academy of Sciences, the University of Innsbruck, the University of Padova, the University of Pavia and the Autonomous Province of Bolzano which provided logistical support to the project.

Support from the project came from the National Science Foundation.

Contact: Paolo Gabrielli, (614) 292-6664; Gabrielli.1@osu.edu
Written by Earle Holland, (614) 292-8384; Holland.8@osu.edu

Earle Holland | Newswise Science News
Further information:
http://www.osu.edu

Further reports about: Climate change Eastern Glacier Science TV Southern Alps environmental change

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>