Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coral reefs may start dissolving when atmospheric CO2 doubles

11.03.2009
Rising carbon dioxide in the atmosphere and the resulting effects on ocean water are making it increasingly difficult for coral reefs to grow, say scientists.

A study to be published online March 13, 2009 in Geophysical Research Letters by researchers at the Carnegie Institution and the Hebrew University of Jerusalem warns that if carbon dioxide reaches double pre-industrial levels, coral reefs can be expected to not just stop growing, but also to begin dissolving all over the world.

The impact on reefs is a consequence of both ocean acidification caused by the absorption of carbon dioxide into seawater and rising water temperatures. Previous studies have shown that rising carbon dioxide will slow coral growth, but this is the first study to show that coral reefs can be expected to start dissolving just about everywhere in just a few decades, unless carbon dioxide emissions are cut deeply and soon.

"Globally, each second, we dump over 1000 tons of carbon dioxide into the atmosphere and, each second, about 300 tons of that carbon dioxide is going into the oceans," said co-author Ken Caldeira of the Carnegie Institution's Department of Global Ecology, testifying to the U.S. House of Representatives Subcommittee on Insular Affairs, Oceans and Wildlife of the Committee on Natural Resources on February 25, 2009. "We can say with a high degree of certainty that all of this CO2 will make the oceans more acidic – that is simple chemistry taught to freshman college students."

The study was designed determine the impact of this acidification on coral reefs. The research team, consisting of Jacob Silverman, Caldeira, and Long Cao of the Carnegie Institution as well as Boaz Lazar and Jonathan Erez from The Hebrew University of Jerusalem, used field data from coral reefs to determine the effects of temperature and water chemistry on coral calcification rates. Armed with this information, they plugged the data into a computer model that calculated global seawater temperature and chemistry at different atmospheric levels of CO2 ranging from the pre-industrial value of 280 ppm (parts per million) to 750 ppm. The current atmospheric concentration is over 380 ppm, and is rapidly rising due to human-caused emissions, primarily through the burning of fossil fuels.

Based on the model results for more than 9,000 reef locations, the researchers determined that at the highest concentration studied, 750 ppm, acidification of seawater would reduce calcification rates of three quarters of the world's reefs to less than 20% of pre-industrial rates. Field studies suggest that at such low rates, coral growth would not be able to keep up with dissolution and other natural as well as manmade destructive processes attacking reefs.

Prospects for reefs are even gloomier when the effects of coral bleaching are included in the model. Coral bleaching refers to the loss of symbiotic algae that are essential for healthy growth of coral colonies. Bleaching is already a widespread problem, and high temperatures are among the factors known to promote bleaching. According to their model the researchers calculated that under present conditions 30% of reefs have already undergone bleaching and that at CO2 levels of 560 ppm (twice pre-industrial levels) the combined effects of acidification and bleaching will reduce the calcification rates of all the world's reefs by 80% or more. This lowered calcification rate will render all reefs vulnerable to dissolution, without even considering other threats to reefs, such as pollution.

"Our fossil-fueled lifestyle is killing off coral reefs," says Caldeira. "If we don't change our ways soon, in the next few decades we will destroy what took millions of years to create."

"Coral reefs may be the canary in the coal mine," he adds. "Other major pieces of our planet may be similarly threatened because we are using the atmosphere and oceans as dumps for our CO2 pollution. We can save the reefs if we decide to treat our planet with the care it deserves. We need to power our economy with technologies that do not dump carbon dioxide into the atmosphere or oceans."

Ken Caldeira | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>