Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most coral reefs are at risk unless climate change is drastically limited

17.09.2012
Coral reefs face severe challenges even if global warming is restricted to the 2 degrees Celsius commonly perceived as safe for many natural and man-made systems.
Warmer sea surface temperatures are likely to trigger more frequent and more intense mass coral bleaching events. Only under a scenario with strong action on mitigating greenhouse-gas emissions and the assumption that corals can adapt at extremely rapid rates, could two thirds of them be safe, shows a study now published in Nature Climate Change. Otherwise all coral reefs are expected to be subject to severe degradation.

Coral reefs house almost a quarter of the species in the oceans and provide critical services – including coastal protection, tourism and fishing – to millions of people worldwide. Global warming and ocean acidification, both driven by human-caused CO2 emissions, pose a major threat to these ecosystems.

“Our findings show that under current assumptions regarding thermal sensitivity, coral reefs might no longer be prominent coastal ecosystems if global mean temperatures actually exceed 2 degrees Celsius above the pre-industrial level,” says lead author Katja Frieler from the Potsdam Institute for Climate Impact Research. “Without a yet uncertain process of adaptation or acclimation, however, already about 70% of corals are projected to suffer from long-term degradation by 2030 even under an ambitious mitigation scenario.” Thus, the threshold to protect at least half of the coral reefs worldwide is estimated to be below 1.5 degrees Celsius mean temperature increase.

A more comprehensive and robust representation than in previous studies

This study is the first comprehensive global survey of coral bleaching to express results in terms of global mean temperature change. It has been conducted by scientists from Potsdam, the University of British Columbia in Canada and the Universities of Melbourne and Queensland in Australia. To project the cumulative heat stress at 2160 reef locations worldwide, they used an extensive set of 19 global climate models. By applying different emission scenarios covering the 21st century and multiple climate model simulations, a total of more than 32,000 simulation years was diagnosed. This allows for a more robust representation of uncertainty than any previous study.

Corals derive most of their energy, as well as most of their famous color, from a close symbiotic relationship with a special type of microalgae. The vital symbiosis between coral and algae can break down when stressed by warm water temperatures, making the coral “bleach” or turn pale. Though corals can survive this, if the heat stress persists long enough the corals can die in great numbers. “This happened in 1998, when an estimated 16% of corals were lost in a single, prolonged period of warmth worldwide,” says Frieler.

Adaptation is uncertain and ocean acidification means even more stress

To account for a possible acclimation or adaptation of corals to thermal stress, like shifts to symbiont algae with a higher thermal tolerance, rather optimistic assumptions have been included in the study. “However, corals themselves have all the wrong characteristics to be able to rapidly evolve new thermal tolerances,” says co-author Ove Hoegh-Guldberg, a marine biologist at the University of Queensland in Australia. “They have long lifecycles of 5-100 years and they show low levels of diversity due to the fact that corals can reproduce by cloning themselves. They are not like fruit flies which can evolve much faster.”

Previous analyses estimated the effect of thermal adaptation on bleaching thresholds, but not the possible opposing effect of ocean acidification. Seawater gets more acidic when taking up CO2 from the atmosphere. This is likely to act to the detriment of the calcification processes crucial for the corals’ growth and might also reduce their thermal resilience. The new study investigates the potential implications of this ocean acidification effect, finding that, as Hoegh-Guldberg says: “The current assumptions on thermal sensitivity might underestimate, not overestimate, the future impact of climate change on corals.”

This comprehensive analysis highlights how close we are to a world without coral reefs as we know them. “The window of opportunity to preserve the majority of coral reefs, part of the world’s natural heritage, is small,” summarizes Malte Meinshausen, co-author at the Potsdam Institute for Climate Impact Research and the University of Melbourne. “We close this window, if we follow another decade of ballooning global greenhouse-gas emissions.”

Article: Frieler, K., Meinshausen, M., Golly, A., Mengel, M., Lebek, K., Donner, S., Hoegh-Guldberg, O. (2012): Limiting global warming to 2°C is unlikely to save most coral reefs. Nature Climate Change [DOI: 10.1038/NCLIMATE1674] (Advance Online Publication)

Weblink to the article when it is published on September 16th: http://dx.doi.org/10.1038/NCLIMATE1674

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de

Mareike Schodder | PIK Potsdam
Further information:
http://www.pik-potsdam.de

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>