Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooperative SO2 and NOx aerosol formation in haze pollution

29.01.2014
Air pollution in China has exhibited noticeable changes over the past 30 years, shifting from point-source pollution (around factories and industrial plants) in the 1980s to urban pollution in the 1990s.

Since the start of this century, air pollution has become increasingly regional and more complex. Recent research has indicated that the cooperative transition of SO2 and NOx into secondary aerosols (sulfate and nitrate) played a critical role in the haze pollution episode in China in January 2013.


This shows a) particle number size distributions and b) fractional contributions of organics, nitrate, sulfate, ammonium, and chloride to the PM1 mass during the haze episode from 06:00 to 15:00 LT, Jan. 12, 2013.

Credit: ©Science China Press

The coexistence of high concentrations of primary and secondary gaseous and particulate pollutants results in numerous heterogeneous reactions occurring on the surfaces of fine particles. These reactions change the oxidizing capacity of the atmosphere, chemical compositions, and the physicochemical and optical properties of the particulate matter. The overall effect is that air pollution and haze formation is accelerated.

It is, therefore, important to explore the formation mechanisms of secondary aerosols during air pollution episodes. The paper, "Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China", Science China: Earth Sciences, No. 1, 2014, by Professor Wang and co-workers shows that the formation of secondary sulfate aerosols from SO2 increases in the presence of NOx.

This study explores the cooperative transition of SO2 and NOx into secondary aerosols on the surfaces of carbon-containing particles through heterogeneous reactions. The formation of sulfates from SO2 is promoted by the existence of NOx. Results show that as the particle size increases, the fractional contributions of secondary inorganic ions, such as sulfate and nitrate, also increase (Figure 1). The hygroscopicity of the particles increase and the increased water content can accelerate the gas–liquid–solid reactions of SO2 and NOx, which further increases the hygroscopicity of the particles. These processes form a positive feedback mechanism that enhances the conversion of primary gas pollutants into secondary aerosols. Consequently, it is important to reduce emissions of the precursor gases of PM2.5 to reduce the overall PM2.5 concentrations in the atmosphere. The authors conclude that in central and eastern China, SO2 and NOx should be controlled synchronously to reduce PM2.5 concentrations.

Corresponding author:

LIU Zirui
lzr@dq.cern.ac.cn
See the article:
WANG, Y. S., YAO, L., WANG, L. L., LIU, Z. R., JI, D. S., TANG, G. Q., ZHANG, J. K., HU, B., XIN, J. Y. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. SCIENCE CHINA Earth Sciences, 2014, doi: 10.1007/s11430-013-4773-4.

links: http://link.springer.com/article/10.1007%2Fs11430-013-4773-4.

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 60 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

YAN Bei | EurekAlert!
Further information:
http://www.scichina.org

More articles from Earth Sciences:

nachricht First Eastern Pacific tropical depression runs ahead of dawn
29.05.2015 | NASA/Goddard Space Flight Center

nachricht The Arctic: Interglacial period with a break
28.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>