Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Congestion in the Earth’s Mantle

Mineralogists of the Universities Jena and Bayreuth explain in the science magazine ‘Nature Geoscience‘ why plate tectonics stagnates in some places

The Earth is dynamic. What we perceive as solid ground beneath our feet, is in reality constantly changing. In the space of a year Africa and America are drifting apart at the back of the Middle Atlantic for some centimeters while the floor of the Pacific Ocean is subducted underneath the South American Continent.

“In 100 million years’ time Africa will be pulled apart and North Australia will be at the equator,” says Prof. Dr. Falko Langenhorst from the Friedrich Schiller University Jena (Germany). Plate tectonics is leading to a permanent renewal of the ocean floors, the mineralogist explains. The gaps between the drifting slabs are being filled up by rising melt, solidifying to new oceanic crust. In other regions the slabs dive into the deep interior of the Earth and mix with the surrounding Earth’s mantle.

The Earth is the only planet in our solar system, conducting such a ‘facelift’ on a regular basis. But the continuous up and down on the Earth`s crust doesn’t run smoothly everywhere. “Seismic measurements show that in some mantle regions, where one slab is subducted underneath another one, the movement stagnates, as soon as the rocks have reached a certain depth,” says Prof. Langenhorst. The causes of the ‘congestion‘ of the subducted plate are still unknown. In the current issue of the science magazine ‘Nature Geoscience‘ Prof. Langenhorst and earth scientists of Bayreuth University now explain the phenomenon for the first time (DOI: 10.1038/NGEO1772).

According to this, the rocks of the submerging ocean plate pond at a depth of 440 to 650 kilometers – in the transition zone between the upper and the lower Earth mantle. “The reason for that can be found in the slow diffusion and transformation of mineral components,“ mineralogist Langenhorst explains. On the basis of high pressure experiments the scientists were able to clarify things: under the given pressure and temperature in this depth, the exchange of elements between the main minerals of the subducted ocean plate – pyroxene and garnet – is slowed down to an extreme extent. “The diffusion of a pyroxene-component in garnet is so slow, that the submerging rocks don’t become denser and heavier, and therefore stagnate,“ the Jena scientist says.

Interestingly there is congestion in the earth mantle exactly where the ocean floor submerges particularly fast into the interior of the Earth. “In the Tonga rift off Japan for example, the speed of subduction is very high,” Prof. Langenhorst states. Thereby the submerging rocks of the oceanic plate stay relatively cold up to great depth, which makes the exchange of elements between the mineral components exceptionally difficult. “It takes about 100 Million years for pyroxene crystals which are only 1 mm in size to diffuse into the garnet. For this amount of time the submerging plate stagnates,” Langenhorst describes the rock congestion. It can probably only diffuse at the boundary of the lower Earth mantle. Because then pyroxene changes into the mineral akimotoite due to the higher pressure in the depth of 650 kilometers. “This could lead to an immediate rise in the rock density and would enable the submerging into greater depths.“

Original Publication:
Van Mierlo VL et al. Stagnation of subducting slabs in the transition zone due to slow diffusion in the majoritic garnet. Nature Geoscience, DOI: 10.1038/NGEO1772
Prof. Dr. Falko Langenhorst
Institute for Geosciences
Friedrich Schiller University Jena
Carl-Zeiss-Promenade 10
D-07745 Jena
Email: falko.langenhorst[at]

Dr. Ute Schönfelder | idw
Further information:

More articles from Earth Sciences:

nachricht Jacobs University supports new mapping of Mars, Mercury and the Moon
21.03.2018 | Jacobs University Bremen gGmbH

nachricht Thawing permafrost produces more methane than expected
20.03.2018 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>