Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Congestion in the Earth’s Mantle

01.04.2013
Mineralogists of the Universities Jena and Bayreuth explain in the science magazine ‘Nature Geoscience‘ why plate tectonics stagnates in some places

The Earth is dynamic. What we perceive as solid ground beneath our feet, is in reality constantly changing. In the space of a year Africa and America are drifting apart at the back of the Middle Atlantic for some centimeters while the floor of the Pacific Ocean is subducted underneath the South American Continent.

“In 100 million years’ time Africa will be pulled apart and North Australia will be at the equator,” says Prof. Dr. Falko Langenhorst from the Friedrich Schiller University Jena (Germany). Plate tectonics is leading to a permanent renewal of the ocean floors, the mineralogist explains. The gaps between the drifting slabs are being filled up by rising melt, solidifying to new oceanic crust. In other regions the slabs dive into the deep interior of the Earth and mix with the surrounding Earth’s mantle.

The Earth is the only planet in our solar system, conducting such a ‘facelift’ on a regular basis. But the continuous up and down on the Earth`s crust doesn’t run smoothly everywhere. “Seismic measurements show that in some mantle regions, where one slab is subducted underneath another one, the movement stagnates, as soon as the rocks have reached a certain depth,” says Prof. Langenhorst. The causes of the ‘congestion‘ of the subducted plate are still unknown. In the current issue of the science magazine ‘Nature Geoscience‘ Prof. Langenhorst and earth scientists of Bayreuth University now explain the phenomenon for the first time (DOI: 10.1038/NGEO1772).

According to this, the rocks of the submerging ocean plate pond at a depth of 440 to 650 kilometers – in the transition zone between the upper and the lower Earth mantle. “The reason for that can be found in the slow diffusion and transformation of mineral components,“ mineralogist Langenhorst explains. On the basis of high pressure experiments the scientists were able to clarify things: under the given pressure and temperature in this depth, the exchange of elements between the main minerals of the subducted ocean plate – pyroxene and garnet – is slowed down to an extreme extent. “The diffusion of a pyroxene-component in garnet is so slow, that the submerging rocks don’t become denser and heavier, and therefore stagnate,“ the Jena scientist says.

Interestingly there is congestion in the earth mantle exactly where the ocean floor submerges particularly fast into the interior of the Earth. “In the Tonga rift off Japan for example, the speed of subduction is very high,” Prof. Langenhorst states. Thereby the submerging rocks of the oceanic plate stay relatively cold up to great depth, which makes the exchange of elements between the mineral components exceptionally difficult. “It takes about 100 Million years for pyroxene crystals which are only 1 mm in size to diffuse into the garnet. For this amount of time the submerging plate stagnates,” Langenhorst describes the rock congestion. It can probably only diffuse at the boundary of the lower Earth mantle. Because then pyroxene changes into the mineral akimotoite due to the higher pressure in the depth of 650 kilometers. “This could lead to an immediate rise in the rock density and would enable the submerging into greater depths.“

Original Publication:
Van Mierlo VL et al. Stagnation of subducting slabs in the transition zone due to slow diffusion in the majoritic garnet. Nature Geoscience, DOI: 10.1038/NGEO1772
Contact:
Prof. Dr. Falko Langenhorst
Institute for Geosciences
Friedrich Schiller University Jena
Carl-Zeiss-Promenade 10
D-07745 Jena
Germany
Email: falko.langenhorst[at]uni-jena.de

Dr. Ute Schönfelder | idw
Further information:
http://www.uni-jena.de

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>