Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Computer simulations shed light on the physics of rainbows

Computer scientists at UC San Diego, who set out to simulate all rainbows found in nature, wound up answering questions about the physics of rainbows as well.

The scientists recreated a wide variety of rainbows – primary rainbows, secondary rainbows, redbows that form at sunset and cloudbows that form on foggy days – by using an improved method for simulating how light interacts with water drops of various shapes and sizes. Their new approach even yielded realistic simulations of difficult-to-replicate “twinned” rainbows that split their primary bow in two.

A range of simulated rainbows: From left: Rainbow based on the prevailing theory to simulate rainbows, primary rainbow with supernumerary bow, primary bow and double rainbow, primary bow with supernumerary bows and twinned rainbow, where the primary bow splits in two.

UC San Diego alumnus Iman Sadeghi, who did the work while a Ph.D. student at the Jacobs School of Engineering, his advisor, computer science professor Henrik Wann Jensen, and scientists from Spain, England and Switzerland, are set to publish their findings in ACM Transactions on Graphics in December of this year.

“This goes beyond computer graphics,” Jensen said. “We now have an almost complete picture of how rainbows form.”

Jensen is no stranger to advances in computer graphics. He earned an Academy Award in 2004 for research that brought life-like skin to animated characters. He has worked on a number of Hollywood blockbusters, including James Cameron’s “Avatar.”

Jensen, Sadeghi and colleagues originally set out to simulate rainbows to better understand how spherical water drops interact with light, resulting in the bright, multi-colored arcs that we are used to seeing when rain stops or in tropical, humid weather. They were hoping to improve techniques used in animated movies and video games.

“You usually don’t get the opportunity to study such beautiful phenomena while working on your Ph.D thesis,” said Sadeghi, who is now a software engineer in the graphics division of Google in Santa Monica. “There is a lot more to rainbows than meets the eye.”

As they started running various simulations, the scientists realized that the interaction of light with spherical drops could not explain some kinds of rainbows, such as twinned rainbows. Scientists turned to research showing that, as a water drop falls, air pressure flattens the bottom of it and shapes it like a burger. Jensen and his team called these slightly deformed water drops “burgeroids.” “It’s not a very mathematical term, but we like to use it,” Jensen said. Simulations based on the so-called burgeroids, rather than on spherical drops of water, allowed the researchers to replicate a wide range of rainbows found in nature. “We are the first to present an accurate simulation of twinned rainbows,” Sadeghi said.

The basic mechanism behind the formation of rainbows has been well understood for hundreds of years: A beam of light is both reflected and refracted within the water drop, and becomes strongly concentrated near the “rainbow angle” in the drop. The rainbow angle changes with the color of the light. As a result, sunlight separates into its spectral components, forming the colors we see in the sky. “The variation in the appearance of rainbows is due to the size and shape of rain drops” Sadeghi said.

It is surprising that the physics of rainbows are still not completely understood, Jensen said. In the past, eminent scientists, including Isaac Newton and French mathematician Rene Descartes, made calculations and conducted experiments to explain how rainbows form. But today, funding for rainbow research is scarce and so is work on the topic.

Jensen’s quest to learn about the physics of rainbows led him to the Light and Color in Nature conference at St. Mary’s College in St. Mary’s City, Md. He served as keynote speaker and met Philip Laven, an internationally renowned expert on rainbows, who became one of the study’s co-authors.

Until now, most simulations of rainbows had assumed that water drops are spherical, which isn’t true for large rain drops, Laven said. In this paper, researchers have adopted a completely different approach and developed a more realistic model to recreate rainbows, he said.

“The simulations shown in this paper offer the prospect of a better understanding of real rainbows,” Laven said. “I hope that the next step will be to use these new techniques for a systematic investigation of rainbows caused by realistically shaped rain drops.”

Jensen, Sadeghi, Laven and their colleagues plan to present their findings at the SIGGRAPH conference in 2012, which will take place in Los Angeles. Jensen also plans to attend the next Light and Color in Nature conference, which will take place in Alaska. Will he try to simulate the Northern Lights next? He just might, he said.

Ioana Patringenaru | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>