Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer simulations shed light on the physics of rainbows

07.12.2011
Computer scientists at UC San Diego, who set out to simulate all rainbows found in nature, wound up answering questions about the physics of rainbows as well.

The scientists recreated a wide variety of rainbows – primary rainbows, secondary rainbows, redbows that form at sunset and cloudbows that form on foggy days – by using an improved method for simulating how light interacts with water drops of various shapes and sizes. Their new approach even yielded realistic simulations of difficult-to-replicate “twinned” rainbows that split their primary bow in two.


A range of simulated rainbows: From left: Rainbow based on the prevailing theory to simulate rainbows, primary rainbow with supernumerary bow, primary bow and double rainbow, primary bow with supernumerary bows and twinned rainbow, where the primary bow splits in two.

UC San Diego alumnus Iman Sadeghi, who did the work while a Ph.D. student at the Jacobs School of Engineering, his advisor, computer science professor Henrik Wann Jensen, and scientists from Spain, England and Switzerland, are set to publish their findings in ACM Transactions on Graphics in December of this year.

“This goes beyond computer graphics,” Jensen said. “We now have an almost complete picture of how rainbows form.”

Jensen is no stranger to advances in computer graphics. He earned an Academy Award in 2004 for research that brought life-like skin to animated characters. He has worked on a number of Hollywood blockbusters, including James Cameron’s “Avatar.”

Jensen, Sadeghi and colleagues originally set out to simulate rainbows to better understand how spherical water drops interact with light, resulting in the bright, multi-colored arcs that we are used to seeing when rain stops or in tropical, humid weather. They were hoping to improve techniques used in animated movies and video games.

“You usually don’t get the opportunity to study such beautiful phenomena while working on your Ph.D thesis,” said Sadeghi, who is now a software engineer in the graphics division of Google in Santa Monica. “There is a lot more to rainbows than meets the eye.”

As they started running various simulations, the scientists realized that the interaction of light with spherical drops could not explain some kinds of rainbows, such as twinned rainbows. Scientists turned to research showing that, as a water drop falls, air pressure flattens the bottom of it and shapes it like a burger. Jensen and his team called these slightly deformed water drops “burgeroids.” “It’s not a very mathematical term, but we like to use it,” Jensen said. Simulations based on the so-called burgeroids, rather than on spherical drops of water, allowed the researchers to replicate a wide range of rainbows found in nature. “We are the first to present an accurate simulation of twinned rainbows,” Sadeghi said.

The basic mechanism behind the formation of rainbows has been well understood for hundreds of years: A beam of light is both reflected and refracted within the water drop, and becomes strongly concentrated near the “rainbow angle” in the drop. The rainbow angle changes with the color of the light. As a result, sunlight separates into its spectral components, forming the colors we see in the sky. “The variation in the appearance of rainbows is due to the size and shape of rain drops” Sadeghi said.

It is surprising that the physics of rainbows are still not completely understood, Jensen said. In the past, eminent scientists, including Isaac Newton and French mathematician Rene Descartes, made calculations and conducted experiments to explain how rainbows form. But today, funding for rainbow research is scarce and so is work on the topic.

Jensen’s quest to learn about the physics of rainbows led him to the Light and Color in Nature conference at St. Mary’s College in St. Mary’s City, Md. He served as keynote speaker and met Philip Laven, an internationally renowned expert on rainbows, who became one of the study’s co-authors.

Until now, most simulations of rainbows had assumed that water drops are spherical, which isn’t true for large rain drops, Laven said. In this paper, researchers have adopted a completely different approach and developed a more realistic model to recreate rainbows, he said.

“The simulations shown in this paper offer the prospect of a better understanding of real rainbows,” Laven said. “I hope that the next step will be to use these new techniques for a systematic investigation of rainbows caused by realistically shaped rain drops.”

Jensen, Sadeghi, Laven and their colleagues plan to present their findings at the SIGGRAPH conference in 2012, which will take place in Los Angeles. Jensen also plans to attend the next Light and Color in Nature conference, which will take place in Alaska. Will he try to simulate the Northern Lights next? He just might, he said.

Ioana Patringenaru | EurekAlert!
Further information:
http://www.ucsd.edu
http://www.jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=1144

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>