Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Models of Tornadoes Show Possible Sheltering Region Behind Hills

17.10.2013
Findings could be applied to the design of safer areas for construction

Using 3-D computer models, University of Arkansas researchers have demonstrated the influence of hills on tornadoes. Their models revealed that the height of a hill and the size of a tornado’s vortex have a significant effect on the tornado’s destructive power. The findings could be used to identify safer areas for construction.


This illustration – stills taken from a computer animation of computational fluid dynamics – shows the disruptive effect of a hill on a tornado’s vortex.

The researchers found that lower levels of a tornado’s vortex are significantly disrupted if the height of a hill is equal to or greater than the radius of the vortex. The models also confirmed an important finding from a previous field study – that wind velocities are significantly reduced on the leeward side of hills.

“A preliminary observation from this study indicates that there is a region behind a hill where velocities are reduced due to disruption of the tornado vortex,” said Panneer Selvam, professor of civil engineering. “Of course this disruption depends on the height of the hill, as well as tornado size and velocity. We measured this effect in scenarios in which the width of the hill was perpendicular to the direction of the tornado.”

Selvam and civil engineering graduate student Piotr Gorecki used computational fluid dynamics, a widely used method to study the effect of wind on structures, to create 3-D computer models showing the interaction of hills and tornadoes. The study was conducted to reveal the influence of the hill height on the tornado-hill interaction. Three different rectangular hill heights – 12, 24 and 36 meters – were investigated, although each hill had the same width and length. For each study, the size of the tornado’s vortex – diameter of 8 meters – was the same, as was its maximum velocity – 86.5 meters per second.

Selvam and Gorecki’s simulations revealed that tornado-hill interaction depends on the ratio of a tornado’s radius to the height of a hill. If a tornado’s radius was equal to hill height, the lower levels of the tornado’s vortex were significantly disrupted during the interaction. This contributed a low-velocity region on the leeward side of a rectangular hill. In this region, the researchers found, wind speeds were reduced by at least 41 percent compared to the maximum tornado velocity, the speed at which it was traveling when it hit the hill.

The results showed that the tornado flowed smoothly over the 12-meter hill, the cylindrical shape of its vortex preserved through the entire interaction. At this height, the tornado adjusted to the minimal change in altitude and maintained its strength as it traveled over the hill.

But the 36-meter hill disrupted the tornado’s vortex. The interaction caused the tornado to split into two vortex tips, one in front of the hill and one behind the hill. The vortex tip in front of the hill weakened while the tornado moved over the hill. Eventually, the tip in front of the hill disappeared, and the tip behind the hill strengthened, but the overall strength of the tornado was weakened.

Selvam said the best sheltering abilities would be on the leeward side of bigger hills. This would require a further, historical investigation of the direction from which most tornadoes travel at a given location. For example, most tornadoes that hit southwest Missouri, including the massive EF5 tornado that struck Joplin, Mo., on May 22, 2011, travel from the west to the east.

Selvam previously found that large structures can reduce the force of a tornado vortex. That research showed that tornado forces are reduced if the side of a building is larger than the vortex diameter.

Earlier this year Selvam and a different graduate student released findings of the first field investigations of the effect of terrain elevation changes on tornado path, vortex, strength and damage. They analyzed Google Earth images of the 2011 Tuscaloosa, Ala., and Joplin tornadoes and found tornadoes cause greater damage when they travel uphill and less damage as they move downhill.

That study also revealed that whenever possible, tornadoes tend to climb toward higher elevations rather than going downhill. They also reported that when a region is surrounded by hills, tornadoes skip or hop over valleys beneath and between these hills, and damage is noticed only on the top of the hills.

The results of the field study and the 3-D computer models study were presented at the 12tth Americas Conference on Wind Engineering.

Selvam is holder of the James T. Womble Professorship in Computational Mechanics and Nanotechnology Modeling. He directs the university’s Computational Mechanics Laboratory.

CONTACTS:
Panneer Selvam, professor, civil engineering
College of Engineering
479-575-5356, rps@uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246 or 479-856-2177, dmcgowa@uark.edu

Matt McGowan | Newswise
Further information:
http://www.uark.edu

More articles from Earth Sciences:

nachricht Tiny microenvironments in the ocean hold clues to global nitrogen cycle
23.04.2018 | University of Rochester

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>