Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Models of Tornadoes Show Possible Sheltering Region Behind Hills

17.10.2013
Findings could be applied to the design of safer areas for construction

Using 3-D computer models, University of Arkansas researchers have demonstrated the influence of hills on tornadoes. Their models revealed that the height of a hill and the size of a tornado’s vortex have a significant effect on the tornado’s destructive power. The findings could be used to identify safer areas for construction.


This illustration – stills taken from a computer animation of computational fluid dynamics – shows the disruptive effect of a hill on a tornado’s vortex.

The researchers found that lower levels of a tornado’s vortex are significantly disrupted if the height of a hill is equal to or greater than the radius of the vortex. The models also confirmed an important finding from a previous field study – that wind velocities are significantly reduced on the leeward side of hills.

“A preliminary observation from this study indicates that there is a region behind a hill where velocities are reduced due to disruption of the tornado vortex,” said Panneer Selvam, professor of civil engineering. “Of course this disruption depends on the height of the hill, as well as tornado size and velocity. We measured this effect in scenarios in which the width of the hill was perpendicular to the direction of the tornado.”

Selvam and civil engineering graduate student Piotr Gorecki used computational fluid dynamics, a widely used method to study the effect of wind on structures, to create 3-D computer models showing the interaction of hills and tornadoes. The study was conducted to reveal the influence of the hill height on the tornado-hill interaction. Three different rectangular hill heights – 12, 24 and 36 meters – were investigated, although each hill had the same width and length. For each study, the size of the tornado’s vortex – diameter of 8 meters – was the same, as was its maximum velocity – 86.5 meters per second.

Selvam and Gorecki’s simulations revealed that tornado-hill interaction depends on the ratio of a tornado’s radius to the height of a hill. If a tornado’s radius was equal to hill height, the lower levels of the tornado’s vortex were significantly disrupted during the interaction. This contributed a low-velocity region on the leeward side of a rectangular hill. In this region, the researchers found, wind speeds were reduced by at least 41 percent compared to the maximum tornado velocity, the speed at which it was traveling when it hit the hill.

The results showed that the tornado flowed smoothly over the 12-meter hill, the cylindrical shape of its vortex preserved through the entire interaction. At this height, the tornado adjusted to the minimal change in altitude and maintained its strength as it traveled over the hill.

But the 36-meter hill disrupted the tornado’s vortex. The interaction caused the tornado to split into two vortex tips, one in front of the hill and one behind the hill. The vortex tip in front of the hill weakened while the tornado moved over the hill. Eventually, the tip in front of the hill disappeared, and the tip behind the hill strengthened, but the overall strength of the tornado was weakened.

Selvam said the best sheltering abilities would be on the leeward side of bigger hills. This would require a further, historical investigation of the direction from which most tornadoes travel at a given location. For example, most tornadoes that hit southwest Missouri, including the massive EF5 tornado that struck Joplin, Mo., on May 22, 2011, travel from the west to the east.

Selvam previously found that large structures can reduce the force of a tornado vortex. That research showed that tornado forces are reduced if the side of a building is larger than the vortex diameter.

Earlier this year Selvam and a different graduate student released findings of the first field investigations of the effect of terrain elevation changes on tornado path, vortex, strength and damage. They analyzed Google Earth images of the 2011 Tuscaloosa, Ala., and Joplin tornadoes and found tornadoes cause greater damage when they travel uphill and less damage as they move downhill.

That study also revealed that whenever possible, tornadoes tend to climb toward higher elevations rather than going downhill. They also reported that when a region is surrounded by hills, tornadoes skip or hop over valleys beneath and between these hills, and damage is noticed only on the top of the hills.

The results of the field study and the 3-D computer models study were presented at the 12tth Americas Conference on Wind Engineering.

Selvam is holder of the James T. Womble Professorship in Computational Mechanics and Nanotechnology Modeling. He directs the university’s Computational Mechanics Laboratory.

CONTACTS:
Panneer Selvam, professor, civil engineering
College of Engineering
479-575-5356, rps@uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246 or 479-856-2177, dmcgowa@uark.edu

Matt McGowan | Newswise
Further information:
http://www.uark.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>