Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer model predicts vastly different ecosystem in Antarctica's Ross Sea in the coming century

13.03.2014

Rising temperatures and changing wind patterns sure to affect predator-prey relationships, researchers say

The Ross Sea, a major, biologically productive Antarctic ecosystem, "clearly will be extensively modified by future climate change" in the coming decades as rising temperatures and changing wind patterns create longer periods of ice-free open water, affecting the life cycles of both predators and prey, according to a paper published by researchers funded by the National Science Foundation (NSF).


Adelie penguins cross ice floes near a lead in the sea ice at Cape Royds.

Credit: Peter Rejcek, National Science Foundation

To make their predictions, the researchers used information drawn from the Regional Ocean Modeling System, a computer model of sea-ice, ocean, atmosphere and ice-shelf interactions.

While conceding that "predicting future changes in ecosystems is challenging," the researchers note in a paper published in Geophysical Research Letters, the changes predicted by the computer model have the potential to create "significant but unpredictable impacts on the ocean's most pristine ecosystem."

The wind and temperature changes, the authors note, will affect the ecological balance at the base of the Antarctic food web--including changes in distributions of algae, shrimp-like krill and Antarctic silverfish--which, in turn, may be expected to cause disruptions in the upper portions of the food web, including penguins, seals and whales, which depend on those species for food.

A team of four researchers from the Virginia Institute of Marine Science (VIMS) at the College of William and Mary and the Center for Coastal Physical Oceanography at Old Dominion University in Norfolk, Va., jointly authored the paper.

Walker O. Smith, Jr., a professor at VIMS and the lead author of the study, said: "The model suggests that the substantial changes in the physical setting of the Ross Sea will induce severe changes in the present food web, changes that are driven by global climate change. Without a doubt the Ross Sea 100 years from now will be a completely different system than we know today."

The research was funded by the Polar Programs (awards: 0838948 and 0944254) and the Ocean Sciences divisions in NSF's Geosciences Directorate.

The U.S. Antarctic Program (USAP) coordinates all U.S. research on the Southernmost Continent and in the Southern Ocean as well as providing the necessary logistical support for that science. NSF manages the USAP.

The researchers note that over the last 50 years the distribution and extent of Antarctic sea ice, or ice that floats on the ocean surface, have drastically changed. Among these changes are a documented decrease of sea ice in the Bellingshausen-Amundsen sector, but an increase of sea ice in the Ross Sea sector of Antarctica.

Observations show, they write, that "the duration of ice-free days on the Ross Sea continental shelf has decreased by over two months over the past three decades," which may have had effects on the current balance of biological productivity and the roles of various creatures and microscopic plants in the ocean ecosystem.

But, they also note, "future projections of regional air temperature change, however, suggest that substantial warming will occur in the next century in the Ross Sea sector" while wind speeds are predicted to increase in some areas while decreasing in others.

"These changes are expected to reverse the sea-ice trends in the future; however the projected changes in heat content on the continental shelf and ecosystems dynamics that will occur as a result of such changes remain far from certain."

The model, however, indicates that summer sea ice in the Ross Sea could decrease by more than half, or 56 percent, by 2050 and by more than three-quarters, or 78 percent, by 2100. At the same time, the summer mixing of shallow and deep waters in the region as a result of other changes is expected to decrease.

While increased open water would benefit diatoms, the preferred food source of many plant-eating predators such as krill, some krill species, such as crystal krill, prefer a habitat with more ice, which they use as a refuge from predators.

In turn, minke whales, Adelie and Emperor penguins and crabeater seals that feed on crystal krill would have less food available if the crystal krill population were reduced.

With less sea-ice cover, however, more humpback whales could enter the Ross Sea in the summer, increasing krill predation. Adelies, which prey on silverfish at the ice edge, would have to travel further from their nests and, as a result, be potentially more vulnerable to leopard seal predation.

While it is difficult to know specifically what changes the Ross Sea ecosystem will see, the model predictions, if they are accurate, suggest that they are likely to be far-reaching.

"Regardless of the exact nature of the alterations," the researchers write, "substantial portions of the food web that depend on ice in their life cycles will be negatively impacted, leading to severe ecological disruptions."

-NSF-

Media Contacts
Peter West, NSF, (703) 292-7530, pwest@nsf.gov
Cheryl Dybas, NSF, (703) 292-7734, cdybas@nsf.gov

Principal Investigators
Walker O. Smith, Jr., Virginia Institute of Marine Science at the College of William and Mary, (804) 684-7709, wos@vims.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Peter West | EurekAlert!

Further reports about: Adelie penguins Antarctic NSF Ocean VIMS cycles ecosystem temperature whales

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>