Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia Engineering team makes major step in improving forecasts of weather extremes

06.06.2011
Observations major step in improving forecasts of weather extremes such as floods and droughts

Moisture and heat fluctuations from the land surface to the atmosphere form a critical nexus between surface hydrology and atmospheric processes, especially those relevant to rainfall.

While current theory has suggested that soil moisture has had a positive impact on precipitation, there have been very few large-scale observations of this.

A team of researchers from Columbia Engineering, Geophysical Fluid Dynamics Laboratory, and Rutgers University has now demonstrated that evaporation from the land surface is able to modify summertime rainfall east of the Mississippi and in the monsoonal region in the southern U.S. and Mexico. One of their main findings is that evaporation from the land is, however, only able to modify the frequency of summertime rainfall, not its quantity.

"This is a major shift in our understanding of the coupling between the land surface and the atmosphere, and fundamental for our understanding of the prolongation of hydrological extremes like floods and droughts," said Pierre Gentine, Assistant Professor of Applied Mathematics at The Fu Foundation School for Engineering and Applied Science at Columbia University, and co-author of the paper "Probability of Afternoon Precipitation in eastern United States and Mexico Enhanced by High Evaporation," published in the June 5th online edition of Nature Geoscience. The other co-authors are Kirsten Findell (Geophysical Fluid Dynamics Laboratory), Benjamin Lintner (Rutgers University), and Christopher Kerr (Geophysical Fluid Dynamics Laboratory).

The researchers used data from the National Centers for Environmental Prediction (NCEP) to quantify the impacts of continental evaporation on the frequency and intensity of summertime rainfall over North America. They discovered that higher evaporation increases the probability of afternoon rainfall east of the Mississippi and in Mexico, while it has no influence on rainfall over the Western U.S. The difference is due to the humidity present in the atmosphere. The atmosphere over the western regions is so dry that no matter what the input of moisture via evaporation is from the surface, an added source of moisture will not trigger any rain since it will instantaneously dissipate into the atmosphere. The atmosphere over the eastern regions is sufficiently wet so that the added moisture from the surface evaporation will make it rain.

"If it starts getting really wet in the east," noted Gentine, "then the surface will trigger more rain so it becomes even moister, and this sets up a vicious cycle for floods and droughts. Nature — i.e. the land surface and the vegetation — cannot control the rainfall process in the west but it can in the east and in the south. This is really important in our understanding of the persistence of floods and droughts."

Consequently, once a flood or a drought is triggered by large-scale processes, such as sea surface temperature anomalies, the flood/drought conditions are most likely to persist in the eastern and southern U.S. But in the West, the duration and frequency of floods/droughts are controlled only by oceanic processes: the surface cannot modify the rainfall process. Whether the soil is dry or wet doesn't change subsequent rainfalls: consequently the surface will not help hydrological extremes persist (e.g. floods/droughts).

Gentine is developing a theoretical framework to understand the precipitation and cloud formation over land and says this should be an important breakthrough in our understanding of how soil moisture and vegetation controls cloud formation and the precipitation process. "I find this work fascinating because it's a great blend of theoretical research — understanding how nature works — and practical applications that affect our world —like flood/drought/water management. My lab is right outside: observing clouds and precipitation!"

The study was funded by the National Science Foundation (NSF).

Columbia Engineering

Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF- and NIH-funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world's leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of society's more vexing challenges. http://www.engineering.columbia.edu/

Holly Evarts | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>