Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colorado River reservoirs could bottom out from warming, business-as-usual

21.07.2009
All reservoirs along the Colorado River might dry up by mid-century as the West warms, a new study finds. The probability of such a severe shortage by then runs as high as one-in-two, unless current water-management practices change, the researchers report.

The study's coauthors looked at the effects of a range of reductions in Colorado River stream flow on future reservoir levels and at the implications of different management strategies.

Even under the harshest drying caused by climate change, the large storage capacity of reservoirs on the Colorado might help sustain water supply for a few decades. However, new water management approaches are critical to minimize the chances of fully depleting reservoir storage by mid-century.

"This study, along with others that predict future flow reductions in the Colorado River Basin, suggests that water managers should begin to re-think current water management practices during the next few years, before the more serious effects of climate change appear," says lead study author Balaji Rajagopalan of the University of Colorado in Boulder (CU-Boulder).

The findings by Rajagopalan and his colleagues have been accepted by the journal Water Resources Research, published by the American Geophysical Union (AGU).

The Colorado River system is enduring its 10th year of a drought. Fortunately, the river system entered the drought in 2000, with the reservoirs at approximately 95 percent of capacity. The reservoir system is currently at 59 percent of capacity, about the same as this time last year, says Rajagopalan. Roughly 30 million people depend on the Colorado River for drinking and irrigation water.

The research team examined the future vulnerability of the system to water supply variability coupled with projected changes in water demand. They found that through 2026, the risk of fully depleting reservoir storage in any given year remains below 10 percent under any scenario of climate fluctuation or management alternative. During this period, the reservoir storage could even recover from its current low level, according to the researchers.

But if climate change results in a 10 percent reduction in the Colorado River's average stream flow as some recent studies predict, the chances of fully depleting reservoir storage will exceed 25 percent by 2057, according to the study. If climate change results in a 20 percent flow reduction, the chances of fully depleting reservoir storage will exceed one in two by 2057, Rajagopalan says.

"On average, drying caused by climate change would increase the risk of fully depleting reservoir storage by nearly ten times more than the risk we expect from population pressures alone," Rajagopalan says. "By mid-century this risk translates into a 50 percent chance in any given year of empty reservoirs, an enormous risk and huge water management challenge," he says.

The river hosts more than a dozen dams along its 2,330-kilometer (1,450-mile) journey from Colorado's Rocky Mountains to the Gulf of California. Total storage capacity of reservoirs on the Colorado exceeds 60 million acre feet, almost 4 times the average annual flow on the river, and the two largest reservoirs - Lake Mead and Lake Powell - can store up to 50 million acre feet of water. As a result, the risk of full reservoir depletion will remain low through 2026, even is stream flow drops 20 percent stream flow as a result of climate change, Rajagopalan says.

Between 2026 and 2057, the risks of fully depleting reservoir storage will increase seven-fold under the current management practices when compared with risks expected from population pressures alone. Implementing more aggressive management practices - in which downstream releases are reduced during periods of reservoir shortages - could lead to only a two-fold increase in risk of depleting all reservoir storage during this period, according to the study.

The magnitude of the risk will ultimately depend on the extent of climate drying and on the types of water management and conservation strategies established.

"Water conservation and relatively small pre-planned delivery shortages tied to declining reservoir levels can play a big part in reducing our risk," says Ken Nowak, a graduate student with CU- Boulder's Center for Advanced Decision Support for Water and Environmental Systems, or CADSWES, and a study co-author.

"But the more severe the drying with climate change, the more likely we will see shortages and perhaps empty reservoirs despite our best efforts." Nowak says. "The important thing is not to get lulled into a sense of safety or security with the near-term resiliency of the Colorado River basin water supply. If we do, we're in for a rude awakening."

The study was conducted with support from the Western Water Assessment, a joint venture of CU- Boulder and the National Oceanic and Atmospheric Administration (NOAA), as well as CADSWES and the Bureau of Reclamation.

Other study authors included James Prairie of the Bureau of Reclamation, Martin Hoerling and Andrea Ray of NOAA, Joseph Barsugli and Bradley Udall of the Cooperative Institute for Research in Environmental Sciences (CIRES) at CU-Boulder, and Benjamin Harding of AMEC Earth & Environmental Inc. of Boulder.

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>