Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Colorado mountain hail may disappear in a warmer future

NOAA-led study shows less hail, more rain in region's future, with possible increase in flood risk

Summertime hail could all but disappear from the eastern flank of Colorado's Rocky Mountains by 2070, according to a new modeling study by scientists from NOAA and several other institutions.

Less hail damage could be good news for gardeners and farmers, said Kelly Mahoney, Ph.D., lead author of the study and a postdoctoral scientist at NOAA's Earth System Research Laboratory in Boulder, Colo. But a shift from hail to rain can also mean more runoff, which could raise the risk of flash floods, she said.

"In this region of elevated terrain, hail may lessen the risk of flooding because it takes a while to melt," Mahoney said. "Decision makers may not want to count on that in the future."

For the new study, published this week in the journal Nature Climate Change, Mahoney and her colleagues used "downscaling" modeling techniques to try to understand how climate change might affect hail-producing weather patterns across Colorado.

The research focused on storms involving relatively small hailstones (up to pea-sized) on Colorado's Front Range, a region that stretches from the foothill communities of Colorado Springs, Denver and Fort Collins up to the Continental Divide. Colorado's most damaging hailstorms tend to occur further east and involve larger hailstones not examined in this study.

In the summer on the Front Range, precipitation commonly falls as hail above an elevation of 7,500 feet. Decision makers concerned about the safety of mountain dams and flood risk have been interested in how climate change may affect the amount and nature of precipitation in the region.

Mahoney and her colleagues began exploring that question with results from two existing climate models that assumed that levels of climate-warming greenhouse gases will continue to increase in the future (for instance, carbon dioxide, which is at about 390 parts per million today, increases in the model to 620 ppm by 2070).

But the weather processes that form hail – thunderstorm formation, for example – occur on much smaller scales than can be reproduced by global climate models. So the team "downscaled" the global model results twice: first to regional-scale models that can take regional topography and other details into account (this step was completed as part of the National Center for Atmospheric Research's North American Regional Climate Change Assessment Program). Then, the regional results were further downscaled to weather-scale models that can simulate the details of individual storms and even the in-cloud processes that create hail.

Finally, the team compared the hailstorms of the future (2041-2070) to those of the past (1971-2000) as captured by the same sets of downscaled models. Results were similar in experiments with both climate models.

"We found a near elimination of hail at the surface," Mahoney said.

In the future, increasingly intense storms may actually produce more hail inside clouds, the team found. However, because those relatively small hailstones fall through a warmer atmosphere, they melt quickly, falling as rain at the surface or evaporating back into the atmosphere. In some regions, simulated hail fell through an additional 1,500 feet (~450 meters) of above-freezing air in the future, compared to the past.

The research team also found evidence that extreme precipitation events across all of Colorado may become more extreme in the future, while changes in hail patterns may depend on hailstone size -- results that are being explored in more detail in ongoing work.

Mahoney's postdoctoral research was supported by the PACE program (Postdocs Applying Climate Expertise) administered by the University Corporation for Atmospheric Research and funded by NOAA, the Bureau of Reclamation and the Western Water Assessment. PACE connects young climate scientists with real-world problems such as those faced by water resource managers.

"With climate change, we are examining potential changes in the magnitude and character of precipitation at high elevations," said John England, Ph.D., flood hydrology specialist at the Bureau of Reclamation in Denver, Colo. "The Bureau of Reclamation will now take these scientific results and determine any implications for its facilities in the Front Range of Colorado."

NOAA's mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Join us on Facebook, Twitter and our other social media channels.

Co-authors of the new paper, "Changes in hail and flood risk in high-resolution simulations over the Colorado Mountains," include Michael Alexander (NOAA/Earth System Research Laboratory); Gregory Thompson (National Center for Atmospheric Research) and Joseph Barsugli and James Scott (NOAA/Cooperative Institute for Research in Environmental Sciences, CIRES).

Katy Human | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>