Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New coastland map could help strengthen sea defenses

08.10.2009
The 'Coastland Map' produced by scientists from Durham University and published in the Journal GSA Today, charts the post Ice-Age tilt of the UK and Ireland and current relative sea-level changes.

According to the map, the sinking effect in the south could add between 10 and 33 per cent to the projected sea-level rises caused by global warming over the next century. *

The projections are less than previous estimations for subsidence and could help local authorities to save money on sea and flood defences through the targeting of resources to areas where sea level rises will be greatest. The data and model could also be used in planning for the managed retreat of threatened coastal communities.

Since the end of the last Ice Age 20,000 years ago, land and sea-levels around the UK coastline have changed in response to the retreat of the ice sheets. As the ice melted, the release of this enormous weight resulted in the landmass slowly tilting back up in the north or down in the south, a process called isostatic adjustment.

These rises and falls come on top of any changes in sea-level caused by global warming. In Scotland, the rise of much of the coastline will offset some of the predicted rises in sea-level due to climate change.

The Durham team, led by Professor Ian Shennan and funded by the Natural Environment Research Council, looked at the relationship of peat, sand and clay sediments that have been uplifted above sea-level or are now submerged below sea level. The team radio-carbon dated samples to see how sediments formed and to calculate changes in sea-levels over thousands of years.

Eighty sites were studied around the UK and Ireland coasts. By coring and examining sediments in drainage ditches and road excavations, the team found evidence of land rises and falls from the relative elevation of sediments. These results were assessed along with previous studies of sites including the Thames, Humber, Tyne and Tees estuaries, southern England, Ireland, Wales and Scotland.

The team used the data to test models of the earth's response to ice load and this modelling technique can now be applied to other ice-affected countries with maritime boundaries, and can help predict the future of coastal areas around the world.

Prof Shennan said: "The rate of uplift north of the River Tyne to Scotland increases because the ice sheets there were thicker and heavier. The action of the Ice Age on our landmass has been like squeezing a sponge which eventually regains its shape. The earth's crust has reacted over thousands of years and is continuing to react.

"Subsidence and rising sea levels will have implications for people and habitats, and will require action to manage resorts, industrial sites, ports, beaches, salt marshes and wetlands, wildlife and bird migrations."

The new map shows how the UK and Ireland are responding to the ice sheet compression of the earth's core and the current rate of land tilt across the UK. In Northumberland, researchers found sediments from 7,000 years ago five metres below, and others from 4,000 years ago at 1 metre above the present sea level. This indicates that the sea level rose above present levels from around 7,500 years ago to 4,500 years ago, and then dropped and is continuing to fall. Sea-levels in most of Scotland peaked even higher about 4,500 years ago and have been falling ever since because the land has risen.

Sea levels 7,000 years ago were some 15 metres below the present levels in the Fenland in eastern England, and the levels are still rising. The team predicts that levels will continue to rise as the land falls, at a rate of 0.4 to 0.7 millimetres a year.

Sea-level rise brings in sediment which is soft and consolidates in coastal areas. Sea defences built on soft sediments can suffer additional subsidence due to compaction of the sediments. The Fenland is particularly affected by sediment compaction. The Thames, Bristol Channel and Kent coast are also affected as the sediment in rivers, estuaries and flood plains settles and compresses.

The three main areas of land subsidence in the UK and Ireland (see map) reflect the advance and retreat of the Scandinavian, and the British and Irish Ice Sheets.

Durham's new map and model also takes into account Newton's law of gravitational attraction and 'the Geoid effect'. Melting ice has affected the relationship between the ice, sea and land, and the mass inside the earth's mantle. These changes have produced a gravitational effect on the surface of the water in the planet's oceans.

Prof Shennan said: "When a huge mass of ice melts, the land readjusts over time but there's also a response in the earth's mantle and this affects the shape of the surface of the earth's oceans. Changes in our oceans and land uplift and subsidence will continue to have a significant effect on our coastlines this century."

Areas of falling land and rising sea levels:

Somerset, Cornwall and Devon
Dorset, Hampshire and Sussex
Kent and Essex
Suffolk and Norfolk
The Wash
Humberside and North Lincolnshire
Shetland Islands.
South Wales
Southern Ireland
Western Ireland
Areas with little land-level change
North Yorkshire; Cleveland
Mid Wales
Areas of rising land levels include:
Tyne and Wear
Northumbrian coast, Berwickshire, East Lothian,
The Firth of Forth and the Moray Forth
Fife, Aberdeenshire, Caithness
Minch and the Western Isles
Argyll, Ayrshire and the Solway Firth
Northern Irish coast
Isle of Man
Cumbria, Lancashire and Merseyside
North Wales

Carl Stiansen | EurekAlert!
Further information:
http://www.dur.ac.uk

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>