Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Many Coastal Wetlands Likely to Disappear this Century

02.12.2010
Many coastal wetlands worldwide — including several on the U.S. Atlantic coast — may be more sensitive than previously thought to climate change and sea-level rise projections for the 21st century.

U.S. Geological Survey scientists made this conclusion from an international research modeling effort published today in the journal Geophysical Research Letters, a publication of the American Geophysical Union. Scientists identified conditions under which coastal wetlands could survive rising sea level.

Using a rapid sea-level rise scenario, most coastal wetlands worldwide will disappear near the end of the 21st century. In contrast, under the slow sea-level rise projection, wetlands with low sediment availability and low tidal ranges are vulnerable and may drown. However, in the slow sea-level rise projection, wetlands with higher sediment availability would be more likely to survive.

Several coastal marshes along the east coast of the United States, for example, have limited sediment supplies and are likely to disappear this century. Vulnerable east coast marshes include the Plum Island Estuary (the largest estuary in New England) and coastal wetlands in North Carolina’s Albemarle-Pamlico Sound (the second-largest estuary in the United States).

“Accurate information about the adaptability of coastal wetlands to accelerations in sea-level rise, such as that reported in this study, helps narrow the uncertainties associated with their disappearance,” said USGS scientist Glenn Guntenspergen, an author of this report. “This research is essential for allowing decision makers to best manage local tradeoffs between economic and conservation concerns.”

“Previous assessments of coastal wetland responses to sea-level rise have been constrained because they did not consider the ability of wetlands to naturally modify their physical environment for adaptation,” said USGS scientist Matt Kirwan, an author of this report. “Failure to incorporate the interactions of inundation, vegetation and sedimentation in wetlands limits the usefulness of past assessments.”

USGS scientists specifically identified the sediment levels and tidal ranges (difference between high and low tide) necessary for marshes to survive sea-level rise. As water floods a wetland and flows through its vegetation, sediment is carried from upstream and deposited on the wetland’s surface, allowing it to gain elevation. High tidal ranges allow for better sediment delivery, and the higher sediment concentrations in the water allow wetlands to build more elevation.

Coastal wetlands provide critical services such as absorbing energy from coastal storms, preserving shorelines, protecting human populations and infrastructure, supporting commercial seafood harvests, absorbing pollutants and serving as critical habitat for migratory bird populations. These resources and services will be threatened as sea-level rise inundates wetlands.

The rapid sea-level rise scenario used as the basis for this study is accredited to Stefan Rahmstorf at Potsdam University, one of the contributing authors of the Intergovernmental Panel on Climate Change Fourth Assessment Report. The slow sea-level rise projection is from the A1B scenario of the Intergovernmental Panel on Climate Change Fourth Assessment Report.

The study, “Limits on the Adaptability of Coastal Marshes to Rising Sea-Level,” can be found online. Any journalists who are not registered with AGU and cannot view this article can contact USGS to have a copy emailed to them.

Photos accompanying this release can be found at http://gallery.usgs.gov/tags/NR2010_12_01

USGS provides science for a changing world. Visit USGS.gov, and follow us on Twitter @USGS and our other social media channels.

Subscribe to our news releases via e-mail, RSS or Twitter.

Glenn Guntenspergen | EurekAlert!
Further information:
http://www.usgs.gov

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>