Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Many Coastal Wetlands Likely to Disappear this Century

02.12.2010
Many coastal wetlands worldwide — including several on the U.S. Atlantic coast — may be more sensitive than previously thought to climate change and sea-level rise projections for the 21st century.

U.S. Geological Survey scientists made this conclusion from an international research modeling effort published today in the journal Geophysical Research Letters, a publication of the American Geophysical Union. Scientists identified conditions under which coastal wetlands could survive rising sea level.

Using a rapid sea-level rise scenario, most coastal wetlands worldwide will disappear near the end of the 21st century. In contrast, under the slow sea-level rise projection, wetlands with low sediment availability and low tidal ranges are vulnerable and may drown. However, in the slow sea-level rise projection, wetlands with higher sediment availability would be more likely to survive.

Several coastal marshes along the east coast of the United States, for example, have limited sediment supplies and are likely to disappear this century. Vulnerable east coast marshes include the Plum Island Estuary (the largest estuary in New England) and coastal wetlands in North Carolina’s Albemarle-Pamlico Sound (the second-largest estuary in the United States).

“Accurate information about the adaptability of coastal wetlands to accelerations in sea-level rise, such as that reported in this study, helps narrow the uncertainties associated with their disappearance,” said USGS scientist Glenn Guntenspergen, an author of this report. “This research is essential for allowing decision makers to best manage local tradeoffs between economic and conservation concerns.”

“Previous assessments of coastal wetland responses to sea-level rise have been constrained because they did not consider the ability of wetlands to naturally modify their physical environment for adaptation,” said USGS scientist Matt Kirwan, an author of this report. “Failure to incorporate the interactions of inundation, vegetation and sedimentation in wetlands limits the usefulness of past assessments.”

USGS scientists specifically identified the sediment levels and tidal ranges (difference between high and low tide) necessary for marshes to survive sea-level rise. As water floods a wetland and flows through its vegetation, sediment is carried from upstream and deposited on the wetland’s surface, allowing it to gain elevation. High tidal ranges allow for better sediment delivery, and the higher sediment concentrations in the water allow wetlands to build more elevation.

Coastal wetlands provide critical services such as absorbing energy from coastal storms, preserving shorelines, protecting human populations and infrastructure, supporting commercial seafood harvests, absorbing pollutants and serving as critical habitat for migratory bird populations. These resources and services will be threatened as sea-level rise inundates wetlands.

The rapid sea-level rise scenario used as the basis for this study is accredited to Stefan Rahmstorf at Potsdam University, one of the contributing authors of the Intergovernmental Panel on Climate Change Fourth Assessment Report. The slow sea-level rise projection is from the A1B scenario of the Intergovernmental Panel on Climate Change Fourth Assessment Report.

The study, “Limits on the Adaptability of Coastal Marshes to Rising Sea-Level,” can be found online. Any journalists who are not registered with AGU and cannot view this article can contact USGS to have a copy emailed to them.

Photos accompanying this release can be found at http://gallery.usgs.gov/tags/NR2010_12_01

USGS provides science for a changing world. Visit USGS.gov, and follow us on Twitter @USGS and our other social media channels.

Subscribe to our news releases via e-mail, RSS or Twitter.

Glenn Guntenspergen | EurekAlert!
Further information:
http://www.usgs.gov

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>