Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Coal Mining Hazard Resembles Explosive Volcanic Eruption

Worldwide, thousands of workers die every year from mining accidents, and instantaneous coal outbursts in underground mines are among the major killers. But although scientists have been investigating coal outbursts for more than 150 years, the precise mechanism is still unknown.

New research by scientists at the University of Michigan and Peking University in Beijing, China, suggests that the outbursts occur through a process very similar to what happens during explosive volcanic eruptions. The research is described in a paper in the October issue of the journal Geology.

"Just as magma can fragment when pressure on it is reduced, triggering an explosive eruption, gas-rich coal can also erupt when suddenly decompressed, as happens when excavation exposes a new layer of coal," said Youxue Zhang, professor of geology, whose previous work on volcanic eruptions, Africa's "exploding lakes" and theorized methane-driven ocean eruptions set the stage for the current research.

Zhang did much of the work on the coal outburst project in 2006 and 2007, during a part-time professorship at Peking University. Around that time, a number of deadly coal mine accidents---in China, Russia and the United States---had made headlines, and just before leaving for China in 2006, Zhang had printed out articles about the disasters to read during his flight.

"While reading a paper describing coal outbursts as violent ejection of pulverized coal particles and gas, the similarity of coal outbursts to magma fragmentation suddenly occurred to me," Zhang said.

When he arrived at Peking University, he discussed the idea with colleague Ping Guan, and the two decided to collaborate on experiments simulating coal outbursts. Zhang recruited undergraduate student Haoyue Wang to help with the project, in which the researchers used a shock tube apparatus similar to the one Zhang had used in previous experiments on explosive volcanic eruptions. Their experiments verified that coal outbursts are driven by high gas pressure inside coal and occur through a mechanism similar to magma fragmentation.

Before an explosive volcanic eruption, magma (molten rock in Earth's crust) contains a high concentration of dissolved gas, mainly water vapor. When pressure on the magma is reduced, as happened in the 1980 eruption of Mount St. Helens when overlying rock was suddenly removed, gas bubbles in the magma rapidly expand. Pressure is higher inside the bubbles than in the surrounding magma, and when pressure on the bubble walls builds to the breaking point, the bubbles burst and the magma fragments into pieces in an explosive eruption.

In deep coal beds, coal contains high concentrations of the gases carbon dioxide and methane. When a coal seam is exposed, pressure on the coal is reduced, but pressure on the gas inside the coal remains high. When the resulting stress exceeds the coal's strength, the coal fragments, releasing high-pressure gas that suddenly decompresses, ejecting outward and carrying pulverized coal with it.

The first recorded coal outburst was in France in 1834. Since then, outbursts have occurred in China, Russia, Turkey, Poland, Belgium, Japan and about a dozen other nations. They happen only in deep mines where coal contains gas at high pressure, but as deeper coals are mined to satisfy the world's energy demands, the risk of outbursts increases.

"Knowing the mechanism of coal outbursts is the first step toward predicting and preventing such disasters," said Zhang.

Next, the researchers plan more experiments to verify their results. Then, they hope to capture details of the outbursts with a high-speed camera and to study a variety of coal types from different mines.

The research was funded by Peking University, the Chinese National Science Foundation and the U.S. National Science Foundation.

For more information:

Youxue Zhang

Peking University


Nancy Ross-Flanigan | Newswise Science News
Further information:

Further reports about: Coal Mining Eruption Explosiv Gold Mining Science TV volcanic volcanic eruptions

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>