Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CO2 can be stored underground for 10 times the length needed to avoid climatic impact

28.07.2016

Study of natural-occurring 100,000 year-old CO2 reservoirs shows no significant corroding of 'cap rock', suggesting the greenhouse gas hasn't leaked back out - one of the main concerns with greenhouse gas reduction proposal of carbon capture and storage.

New research shows that natural accumulations of carbon dioxide (CO2) that have been trapped underground for around 100,000 years have not significantly corroded the rocks above, suggesting that storing CO2 in reservoirs deep underground is much safer and more predictable over long periods of time than previously thought.


Image shows a cold water geyser driven by carbon dioxide erupting from an unplugged oil exploration well drilled in 1936 into a natural CO2 reservoir in Utah.

Credit: Professor Mike Bickle

These findings, published today in the journal Nature Communications, demonstrate the viability of a process called carbon capture and storage (CCS) as a solution to reducing carbon emissions from coal and gas-fired power stations, say researchers.

CCS involves capturing the carbon dioxide produced at power stations, compressing it, and pumping it into reservoirs in the rock more than a kilometre underground.

The CO2 must remain buried for at least 10,000 years to avoid the impacts on climate. One concern is that the dilute acid, formed when the stored CO2 dissolves in water present in the reservoir rocks, might corrode the rocks above and let the CO2 escape upwards.

By studying a natural reservoir in Utah, USA, where CO2 released from deeper formations has been trapped for around 100,000 years, a Cambridge-led research team has now shown that CO2 can be securely stored underground for far longer than the 10,000 years needed to avoid climatic impacts.

Their new study shows that the critical component in geological carbon storage, the relatively impermeable layer of "cap rock" that retains the CO2, can resist corrosion from CO2-saturated water for at least 100,000 years.

"Carbon capture and storage is seen as essential technology if the UK is to meet its climate change targets," says lead author Professor Mike Bickle, Director of the Cambridge Centre for Carbon Capture and Storage at the University of Cambridge.

"A major obstacle to the implementation of CCS is the uncertainty over the long-term fate of the CO2 which impacts regulation, insurance, and who assumes the responsibility for maintaining CO2 storage sites. Our study demonstrates that geological carbon storage can be safe and predictable over many hundreds of thousands of years."

The key component in the safety of geological storage of CO2 is an impermeable cap rock over the porous reservoir in which the CO2 is stored. Although the CO2 will be injected as a dense fluid, it is still less dense than the brines originally filling the pores in the reservoir sandstones, and will rise until trapped by the relatively impermeable cap rocks.

"Some earlier studies, using computer simulations and laboratory experiments, have suggested that these cap rocks might be progressively corroded by the CO2-charged brines, formed as CO2 dissolves, creating weaker and more permeable layers of rock several metres thick and jeopardising the secure retention of the CO2," explains Bickle.

"However, these studies were either carried out in the laboratory over short timescales or based on theoretical models. Predicting the behaviour of CO2 stored underground is best achieved by studying natural CO2 accumulations that have been retained for periods comparable to those needed for effective storage."

To better understand these effects, this study, funded by the UK Natural Environment Research Council and the UK Department of Energy and Climate Change, examined a natural reservoir where large natural pockets of CO2 have been trapped in sedimentary rocks for hundreds of thousands of years. Sponsored by Shell, the team drilled deep down below the surface into one of these natural CO2 reservoirs to recover samples of the rock layers and the fluids confined in the rock pores.

The team studied the corrosion of the minerals comprising the rock by the acidic carbonated water, and how this has affected the ability of the cap rock to act as an effective trap over geological periods of time. Their analysis studied the mineralogy and geochemistry of cap rock and included bombarding samples of the rock with neutrons at a facility in Germany to better understand any changes that may have occurred in the pore structure and permeability of the cap rock.

They found that the CO2 had very little impact on corrosion of the minerals in the cap rock, with corrosion limited to a layer only 7cm thick. This is considerably less than the amount of corrosion predicted in some earlier studies, which suggested that this layer might be many metres thick.

The researchers also used computer simulations, calibrated with data collected from the rock samples, to show that this layer took at least 100,000 years to form, an age consistent with how long the site is known to have contained CO2.

The research demonstrates that the natural resistance of the cap rock minerals to the acidic carbonated waters makes burying CO2 underground a far more predictable and secure process than previously estimated.

"With careful evaluation, burying carbon dioxide underground will prove very much safer than emitting CO2 directly to the atmosphere," says Bickle.

###

The Cambridge research into the CO2 reservoirs in Utah was funded by the Natural Environment Research Council (CRIUS consortium of Cambridge, Manchester and Leeds universities and the British Geological Survey) and the Department of Energy and Climate Change.

The project involved an international consortium of researchers led by Cambridge, together with Aarchen University (Germany), Utrecht University (Netherlands), Utah State University (USA), the Julich Centre for Neutron Science, (Garching, Germany), Oak Ridge National Laboratory (USA), the British Geological Survey, and Shell Global Solutions International (Netherlands).

Media Contact

Jennifer Hayward
jennifer.hayward@admin.cam.ac.uk
122-374-8174

 @Cambridge_Uni

http://www.cam.ac.uk 

Jennifer Hayward | EurekAlert!

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>