Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clouds can predict climate changes

10.11.2008
The properties of clouds can be a key to predicting coming climate changes. This is shown by research at the University of Gothenburg in Sweden - ­which has also studied urban pollution.

The earth's climate field is regulated by the balance between incoming solar radiation and outbound heat radiation. The aerosol content of the atmosphere, that is, the proportion of particles in the air, functions as a regulator: cooling off by reflecting incoming light, warming up by absorbing the outbound heat radiation.

But clouds also impact the climate. In various forms­-from thin, indiscernible to thick, gray ones-­clouds cover roughly half of the earth's surface. Clouds reflect a considerable proportion of solar radiation back into space, but, like greenhouse gases, they can also absorb outbound heat radiation. However, the uncertainties surrounding how clouds affect the climate are great ­- according to the UN Climate Panel, the greatest single uncertainty when it comes to estimating the sensitivity of the climate.

Now a new field of research is being established at the University of Gothenburg to fill these knowledge gaps.

In his doctoral dissertation, researcher Frans Olofson at the Department of Chemistry presents a new application of a metering technique in which a laser beam is sent up in the air to measure the aerosol content and how light is being reflected in the atmosphere. The study was carried out on cirrus clouds above northern Norway and is the first to be performed in the climate-sensitive Arctic region using this technology. The study establishes that incoming solar radiation is regulated to a great extent by the shape and size of cloud particles.

"Measurements of this type can be used to improve our descriptions of the radiation properties of cirrus clouds, which in turn can enhance the quality of climate models," says Frans Olofson.

In his dissertation Frans Olofson has also studied periodically troublesome temperature inversions, which can be seen in the winter as a lid of yellowish brown emissions over cities. Inversions have serious impacts on people's health, and the longer they are exposed to them, the more they are affected.

Based on his measurements in Gothenburg, Frans Olofson was able to establish that inversions are strongly tied to meteorological phenomena, and that the time it takes for the pollutants to dissolve varies considerably: from a couple of hours in the morning up to several hours in the afternoon. Sometimes an inversion doesn't break up all day.

Title of dissertation: Lidar Studies of Tropospheric Aerosols and Clouds

Krister Svahn | idw
Further information:
http://www.vr.se

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>