Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clouds: Lighter than air but laden with lead

21.04.2009
Atmospheric lead causes clouds to form more easily, could change pattern of rain and snow

By sampling clouds -- and making their own -- researchers have shown for the first time a direct relation between lead in the sky and the formation of ice crystals that foster clouds. The results suggest that lead generated by human activities causes clouds to form at warmer temperatures and with less water. This could alter the pattern of both rain and snow in a warmer world.

The lead-laden clouds come with a silver lining, however. Under some conditions, these clouds let more of the earth's heat waft back into space, cooling the world slightly. Atmospheric lead primarily comes from human sources such as coal.

The international team of researchers reported their results in the May issue of Nature Geoscience. The collaboration included researchers from institutions in the United States, Switzerland and Germany.

"We know that the vast majority of lead in the atmosphere comes from man-made sources," said atmospheric chemist Dan Cziczo of the Department of Energy's Pacific Northwest National Laboratory and study author. "And now we show that the lead is changing the properties of clouds and therefore the balance of the sun's energy that affects our atmosphere."

Globe Trotting for Lead

Scientists first attempted to goad rain from the sky with silver and lead iodide in the 1940s. Since then, researchers have known that lead can pump up the ice crystals in clouds. But daily human activities also add lead to the atmosphere. The top sources include coal burning, small airplanes flying at the altitude where clouds form, and construction or wind freeing lead from the ground. Cziczo and colleagues wanted to know how lead from these sources affects clouds.

To find out, the researchers collected air from high atop a mountain peak on the Colorado-Wyoming border. In their high altitude lab, they created artificial clouds from the air in a cloud chamber about the size of a small refrigerator. Half of the ice crystals they plucked from the synthetic clouds, they found, contained lead.

The team then collected a dollop of real cloud atop a mountain in Switzerland. About half of those ice crystals also contained lead. But finding lead in an incriminating position doesn't mean it causes ice crystals.

To determine whether lead causes ice crystals and clouds to form, the team turned to a lab in Germany that houses a cloud chamber three stories tall, as well as a smaller chamber in Switzerland. They created dust particles that were either lead-free or contained one percent lead by weight, which is about what scientists find in the atmosphere. They put these dust particles into the chambers and measured the temperature and humidity at which point ice nucleated around the dust.

They found that lead changed the conditions under which clouds appeared. The air didn't have to be as cold or as heavy with water vapor if lead was present.

"Most of what nucleates clouds are dust particles," said Cziczo. "Half of the ones we looked at had lead supercharging them."

Leaden Clouds, Cooler Climes

To investigate what this might mean for the earth's climate, the researchers simulated the global climate with either lead-free dust particles floating around, or with either 10 percent or all of them containing lead.

The computer simulation showed that the clouds they looked at -- typically high, thin clouds -- formed at lower altitudes and different locations in the northern hemisphere when lead was present in dust particles. This will probably affect precipitation, said Cziczo.

"In our atmosphere, lead affects the distribution and density of the kinds of clouds we looked at," said Cziczo, "which might then affect where and when rain and snow fall."

Clouds at lower altitudes let more of the earth's heat, or so-called longwave radiation, escape out to space. So lead-triggered clouds could partly offset global warming due to greenhouse gases.

But that doesn't mean lead in the atmosphere will simply cool the planet, said Cziczo, since they looked at only one type of cloud. Cloudy skies are far more complicated than their wispy image lets on.

"This work highlights how complex these interactions between lead and water vapor and temperature are," said Cziczo. "They're not as simple as greenhouse gases."

Future work will look at the type of lead and how much is needed to affect clouds and precipitation, as well as the atmospheric distribution of the metal dust.

Reference: D. J. Cziczo, O. Stetzer, A. Worringen, M. Ebert, S. Weinbruch, M. Kamphus, S. J. Gallavardin, J. Curtius, S. Borrmann, K. D. Froyd, S. Mertes, O. Möhler and U. Lohmann, Inadvertent Climate Modification Due to Anthropogenic Lead, Nature Geoscience, May 2009, DOI 10.1038/NGEO499 (http://www.nature.com/ngeo/index.html).

This research was supported by the Atmospheric Composition Change the European Network for Excellence, ETH Zurich, the German Research Foundation, and Pacific Northwest National Laboratory directed research funding.

Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,250 staff, has a $918 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965. Follow PNNL on Facebook, LinkedIn and Twitter.

Mary Beckman | EurekAlert!
Further information:
http://www.pnl.gov
http://www.nature.com/ngeo/index.html

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>