Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clouds: Lighter than air but laden with lead

21.04.2009
Atmospheric lead causes clouds to form more easily, could change pattern of rain and snow

By sampling clouds -- and making their own -- researchers have shown for the first time a direct relation between lead in the sky and the formation of ice crystals that foster clouds. The results suggest that lead generated by human activities causes clouds to form at warmer temperatures and with less water. This could alter the pattern of both rain and snow in a warmer world.

The lead-laden clouds come with a silver lining, however. Under some conditions, these clouds let more of the earth's heat waft back into space, cooling the world slightly. Atmospheric lead primarily comes from human sources such as coal.

The international team of researchers reported their results in the May issue of Nature Geoscience. The collaboration included researchers from institutions in the United States, Switzerland and Germany.

"We know that the vast majority of lead in the atmosphere comes from man-made sources," said atmospheric chemist Dan Cziczo of the Department of Energy's Pacific Northwest National Laboratory and study author. "And now we show that the lead is changing the properties of clouds and therefore the balance of the sun's energy that affects our atmosphere."

Globe Trotting for Lead

Scientists first attempted to goad rain from the sky with silver and lead iodide in the 1940s. Since then, researchers have known that lead can pump up the ice crystals in clouds. But daily human activities also add lead to the atmosphere. The top sources include coal burning, small airplanes flying at the altitude where clouds form, and construction or wind freeing lead from the ground. Cziczo and colleagues wanted to know how lead from these sources affects clouds.

To find out, the researchers collected air from high atop a mountain peak on the Colorado-Wyoming border. In their high altitude lab, they created artificial clouds from the air in a cloud chamber about the size of a small refrigerator. Half of the ice crystals they plucked from the synthetic clouds, they found, contained lead.

The team then collected a dollop of real cloud atop a mountain in Switzerland. About half of those ice crystals also contained lead. But finding lead in an incriminating position doesn't mean it causes ice crystals.

To determine whether lead causes ice crystals and clouds to form, the team turned to a lab in Germany that houses a cloud chamber three stories tall, as well as a smaller chamber in Switzerland. They created dust particles that were either lead-free or contained one percent lead by weight, which is about what scientists find in the atmosphere. They put these dust particles into the chambers and measured the temperature and humidity at which point ice nucleated around the dust.

They found that lead changed the conditions under which clouds appeared. The air didn't have to be as cold or as heavy with water vapor if lead was present.

"Most of what nucleates clouds are dust particles," said Cziczo. "Half of the ones we looked at had lead supercharging them."

Leaden Clouds, Cooler Climes

To investigate what this might mean for the earth's climate, the researchers simulated the global climate with either lead-free dust particles floating around, or with either 10 percent or all of them containing lead.

The computer simulation showed that the clouds they looked at -- typically high, thin clouds -- formed at lower altitudes and different locations in the northern hemisphere when lead was present in dust particles. This will probably affect precipitation, said Cziczo.

"In our atmosphere, lead affects the distribution and density of the kinds of clouds we looked at," said Cziczo, "which might then affect where and when rain and snow fall."

Clouds at lower altitudes let more of the earth's heat, or so-called longwave radiation, escape out to space. So lead-triggered clouds could partly offset global warming due to greenhouse gases.

But that doesn't mean lead in the atmosphere will simply cool the planet, said Cziczo, since they looked at only one type of cloud. Cloudy skies are far more complicated than their wispy image lets on.

"This work highlights how complex these interactions between lead and water vapor and temperature are," said Cziczo. "They're not as simple as greenhouse gases."

Future work will look at the type of lead and how much is needed to affect clouds and precipitation, as well as the atmospheric distribution of the metal dust.

Reference: D. J. Cziczo, O. Stetzer, A. Worringen, M. Ebert, S. Weinbruch, M. Kamphus, S. J. Gallavardin, J. Curtius, S. Borrmann, K. D. Froyd, S. Mertes, O. Möhler and U. Lohmann, Inadvertent Climate Modification Due to Anthropogenic Lead, Nature Geoscience, May 2009, DOI 10.1038/NGEO499 (http://www.nature.com/ngeo/index.html).

This research was supported by the Atmospheric Composition Change the European Network for Excellence, ETH Zurich, the German Research Foundation, and Pacific Northwest National Laboratory directed research funding.

Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,250 staff, has a $918 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965. Follow PNNL on Facebook, LinkedIn and Twitter.

Mary Beckman | EurekAlert!
Further information:
http://www.pnl.gov
http://www.nature.com/ngeo/index.html

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>