Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clouds: Lighter than air but laden with lead

21.04.2009
Atmospheric lead causes clouds to form more easily, could change pattern of rain and snow

By sampling clouds -- and making their own -- researchers have shown for the first time a direct relation between lead in the sky and the formation of ice crystals that foster clouds. The results suggest that lead generated by human activities causes clouds to form at warmer temperatures and with less water. This could alter the pattern of both rain and snow in a warmer world.

The lead-laden clouds come with a silver lining, however. Under some conditions, these clouds let more of the earth's heat waft back into space, cooling the world slightly. Atmospheric lead primarily comes from human sources such as coal.

The international team of researchers reported their results in the May issue of Nature Geoscience. The collaboration included researchers from institutions in the United States, Switzerland and Germany.

"We know that the vast majority of lead in the atmosphere comes from man-made sources," said atmospheric chemist Dan Cziczo of the Department of Energy's Pacific Northwest National Laboratory and study author. "And now we show that the lead is changing the properties of clouds and therefore the balance of the sun's energy that affects our atmosphere."

Globe Trotting for Lead

Scientists first attempted to goad rain from the sky with silver and lead iodide in the 1940s. Since then, researchers have known that lead can pump up the ice crystals in clouds. But daily human activities also add lead to the atmosphere. The top sources include coal burning, small airplanes flying at the altitude where clouds form, and construction or wind freeing lead from the ground. Cziczo and colleagues wanted to know how lead from these sources affects clouds.

To find out, the researchers collected air from high atop a mountain peak on the Colorado-Wyoming border. In their high altitude lab, they created artificial clouds from the air in a cloud chamber about the size of a small refrigerator. Half of the ice crystals they plucked from the synthetic clouds, they found, contained lead.

The team then collected a dollop of real cloud atop a mountain in Switzerland. About half of those ice crystals also contained lead. But finding lead in an incriminating position doesn't mean it causes ice crystals.

To determine whether lead causes ice crystals and clouds to form, the team turned to a lab in Germany that houses a cloud chamber three stories tall, as well as a smaller chamber in Switzerland. They created dust particles that were either lead-free or contained one percent lead by weight, which is about what scientists find in the atmosphere. They put these dust particles into the chambers and measured the temperature and humidity at which point ice nucleated around the dust.

They found that lead changed the conditions under which clouds appeared. The air didn't have to be as cold or as heavy with water vapor if lead was present.

"Most of what nucleates clouds are dust particles," said Cziczo. "Half of the ones we looked at had lead supercharging them."

Leaden Clouds, Cooler Climes

To investigate what this might mean for the earth's climate, the researchers simulated the global climate with either lead-free dust particles floating around, or with either 10 percent or all of them containing lead.

The computer simulation showed that the clouds they looked at -- typically high, thin clouds -- formed at lower altitudes and different locations in the northern hemisphere when lead was present in dust particles. This will probably affect precipitation, said Cziczo.

"In our atmosphere, lead affects the distribution and density of the kinds of clouds we looked at," said Cziczo, "which might then affect where and when rain and snow fall."

Clouds at lower altitudes let more of the earth's heat, or so-called longwave radiation, escape out to space. So lead-triggered clouds could partly offset global warming due to greenhouse gases.

But that doesn't mean lead in the atmosphere will simply cool the planet, said Cziczo, since they looked at only one type of cloud. Cloudy skies are far more complicated than their wispy image lets on.

"This work highlights how complex these interactions between lead and water vapor and temperature are," said Cziczo. "They're not as simple as greenhouse gases."

Future work will look at the type of lead and how much is needed to affect clouds and precipitation, as well as the atmospheric distribution of the metal dust.

Reference: D. J. Cziczo, O. Stetzer, A. Worringen, M. Ebert, S. Weinbruch, M. Kamphus, S. J. Gallavardin, J. Curtius, S. Borrmann, K. D. Froyd, S. Mertes, O. Möhler and U. Lohmann, Inadvertent Climate Modification Due to Anthropogenic Lead, Nature Geoscience, May 2009, DOI 10.1038/NGEO499 (http://www.nature.com/ngeo/index.html).

This research was supported by the Atmospheric Composition Change the European Network for Excellence, ETH Zurich, the German Research Foundation, and Pacific Northwest National Laboratory directed research funding.

Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,250 staff, has a $918 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965. Follow PNNL on Facebook, LinkedIn and Twitter.

Mary Beckman | EurekAlert!
Further information:
http://www.pnl.gov
http://www.nature.com/ngeo/index.html

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>