Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloud towers above the Amazon

07.10.2014

Scientists have successfully studied the formation of clouds and precipitation above the Brazilian rainforest with the research aircraft HALO.

"Please buckle up. We are flying through an area with strong turbulence.” Some passengers might be petrified by such an announcement, but the atmosphere and climate researchers from Germany, Brazil and Israel were delighted last month to hear these words.


Inside view of the HALO research aircraft. The scientists busy at work tracking their measurements.

Meinrat O. Andreae, MPI für Chemie


The researchers flew over deforested rain forests many times, here close to Manaus. A smoke cloud rises from a slash-and-burn fire, forming a pyrocumulus cloud.

Manfred Wendisch, Universität Leipzig

Within the framework of a large-scale expedition, more than 60 scientists explored high rising cloud towers above the Amazon rainforest with the research aircraft HALO. The aim of the ACRIDICON-CHUVA measuring campaign was to find out how gases and aerosol particles, cloud drops and ice crystals, wind and solar radiation interact in the atmosphere and thus influence the formation and properties of clouds and precipitation, as well as their impact on the climate.

In 14 measuring flights, leaving from Manaus, Brazil, the researchers flew over the rainforest for about seven hours each and high into the atmosphere. In this context, the aircraft often flew into so-called convective clouds, the term which the meteorologists use for ascending rain and storm clouds. The researchers had a combination of innovative and high-performance measuring instruments on board, which determine the composition and the physical-chemical properties of air and clouds.

Special focus was on the differences between clouds in clean air above the rainforest, and polluted air above Manaus, a city with over one million residents, and areas of deforestation and biomass burning.

“Among other things, we want to understand the influence of pollution on the formation of clouds,” says Meinrat O. Andreae from the Max Planck Institute for Chemistry in Mainz. “When large areas of forest are burnt down, huge amounts of smoke particles are created which rise into the atmosphere and influence cloud formation.”

“Polluted clouds contain much more water droplets than clean clouds, however, the droplets are a lot smaller,” says Manfred Wendisch from the Leipzig Institute for Meteorology of the Leipzig University, explaining the first results. Therefore, polluted clouds form rain less quickly and appear brighter, as smaller droplets reflect more sunlight than larger ones.

“On the HALO ACRDICON-CHUVA flights, for the first time, we were able to simultaneously measure and comprehensively characterize the chemical composition and microphysical properties of cloud particles, aerosol particles and trace gases in high convective clouds,” says Ulrich Pöschl from the Max Planck Institute for Chemistry, who coordinates the research project together with Meinrat Andreae, Manfred Wendisch and Luiz Machado from the Brazilian research institute INPE.

“This makes it possible to record the process of cloud formation in more detail and to better understand and forecast the impact of air pollution on weather and climate.” However, it is still too early for quantitative statements on how the observed effects impact on the climate in the Amazonian rainforest and globally, as the researchers still need to analyze and assess the enormous amounts of data.

In addition to the enthusiasm for the unique scientific data, which the research aircraft HALO collected on its five-week assignment overseas, all participants were very happy that the measuring campaign could finally go ahead after many years of preparation and despite difficult logistical conditions. This would not have been possible without the close cooperation with the Brazilian partners.

Research flights near big storm cells, leading into larger cloud formations, are a pretty unusual task for the test pilots of the German Aerospace Center DLR which operates HALO. "The measurement flights are up to now the most complex flight operations for HALO," says DLR test pilot Steffen Gemsa. "Particularly challenging aeronautically were the repeated overflights of cumulus clouds and of efflux areas of highreaching tropical thunderstorm clouds."

The pilots flew five different scientific basic flight patterns at low altitudes over the Brazilian rainforest. In addition, they went up to extreme altitudes of nearly 15 kilometers. For these flights, the aircraft overcame regular temperature differences of more than 100 degrees Celsius. While the ground often reaches temperatures of over 35 degrees Celsius, temperatures in the upper troposphere are around minus 65 degrees Celsius.

A lot of maintenance work on the aircraft and the measuring instruments needed to be dealt with, but no major technical problems occurred despite the tropical temperatures and turbulences. And all scientists on the aircraft also landed safely back on the ground.

About the ACRDIDICON - CHUVA measuring campaign
The abbreviation stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems “(ACRIDICON)” and Portuguese word for “rain” (CHUVA).

Numerous images and a journal of the ACRIDON-CHUVA measuring campaign can be found on the following websites:

http://www.uni-leipzig.de/~meteo/acridicon-chuva/
http://acridicon-chuva.weebly.com/
The German-Brazilian ACRIDICON-CHUVA research project is carried out in close cooperation with the Brazilian rain research project CHUVA, the US-Brazilian atmosphere research project GO-Amazon and the international Amazon research project LBA:
http://chuvaproject.cptec.inpe.br/portal/noticia.ultimas.logic?i=en
http://science.energy.gov/~/media/ber/pdf/Brochures/GOAMAZON_summary.pdf?id=27
https://lba.inpa.gov.br/lba/lba_ingles/?p=19&lg=eng

The following institutes are directly involved in the ACRIDICON-CHUVA project:

The Max Planck Institute for Chemistry (MPIC), the Leipzig University, the German Aerospace Centre (DLR), the Research Institute Jülich (FZJ), the Leibniz Institute for Tropospheric Research (TROPOS), the Karlsruhe Institute for Technology (KIT), the Federal Institute for Physics and Technology (PTB), the Frankfurt University, the Heidelberg University, the Munich University and the Mainz University from Germany. The contribution of the university partners are financed by the German Research Foundation (DFG). Additional partners include the Hebrew University of Jerusalem, Israel as well as the Instituto Nacional de Pesquisas Espaciais (INPE), the Universidade de São Paulo (USP), the Centro Técnico Aeroespacial (CTA), the Sistema de Proteção da Amazônia (SIPAM) and the Instituto Nacional de Pesquisas da Amazônia (INPA) from Brazil.

About the research aircraft HALO:
The HALO research aircraft is a collective initiative by German environment and climate research bodies. HALO is funded by contributions from the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung; BMBF), the German Research Foundation (Deutsche Forschungsgemeinschaft; DFG), the Helmholtz Association, the Max Planck Society, the Leibniz Association, the Free State of Bavaria, the Karlsruhe Institute of Technology, the German Research Centre for Geosciences (Deutsches GeoForschungsZentrum; GFZ), the Jülich Research Centre (Forschungszentrum Jülich) and the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR).

JOINT PRESS RELEASE OF THE MAX PLANCK INSTITUTE FOR CHEMISTRY AND THE UNIVERSITY OF LEIPZIG


Contact:
Prof. Dr. Meinrat O. Andreae and Prof. Dr. Ulrich Pöschl
Max Planck Institute for Chemistry
(Otto Hahn Institute)
Hahn-Meitner-Weg 1

55128 Mainz
Telephone: +49-(0)-6131-305-6000
E-mail: biogeo@mpic.de

Prof. Dr. Manfred Wendisch
Leipzig Institute for Meteorology 

University of Leipzig 

Stephan str. 3
04103 Leipzig 

Tel.: +49 (0) 341/97-32851 

Fax: +49 (0) 341/97-32899
E-mail: m.wendisch@uni-leipzig.de

Weitere Informationen:

http://www.mpic.de/en/news/press-information/news/wolkentuerme-ueber-dem-amazona...
http://www.uni-leipzig.de/~meteo/acridicon-chuva/
http://acridicon-chuva.weebly.com/

Dr. Susanne Benner | Max-Planck-Institut für Chemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>