Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloud cover unaffected by cosmic rays

10.03.2010
Changes of cosmic rays caused by variations of the solar activity on time scales of a few days do not induce any changes of the global or regional cloud cover. This is concluded from a recent analysis performed by a Swiss-German collaboration. Thus, it is unlikely that cosmic rays influence climate. (Geophysical Research Letters 37, L03802, 03.02.2010)

Clouds play a double role in the Earth's climate. On the one hand, they reflect back to space sunlight shining on the Planet; on the other hand clouds reduce the heat radiation from the Earth's surface into space. Depending on their altitude and properties, therefore, clouds are effectively warming or cooling climate. According to the present perception, the net effect is cooling.

Some years ago, Danish scientists hypothesized that galactic cosmic rays influence the global cloud cover. They derived this hypothesis by evaluating cosmic ray and cloud data over a solar cycle. During an 11-year solar cycle, the Sun's activity and thus the sunspot number increases and decreases again, which causes the strength of the magnetic fields, frozen in the solar wind and deflecting cosmic rays, to vary accordingly.

As a consequence less cosmic radiation reaches Earth at high solar activity. Since the overall solar activity increased during the last century, the Danish authors assumed that the cloud cover and hence the cooling by clouds decreased. They speculated that this effect represents a major cause of the observed global warming. An intense, controversial and still ongoing debate followed.

To test the cosmic ray cloud connection hypothesis independently, the Swiss-German collaboration (scientists from the University of Bern, from EWAG and Frank Arnold from the Max Planck Institute for Nuclear Physics, MPIK) recently analyzed so-called Forbush decreases. These events, generated by sporadic solar eruptions, are characterized by a sudden decrease of the cosmic rays penetrating into the Earth's atmosphere, which recovers again within a few days. The decrease is similar in amplitude as at the maximum of the solar cycle.

How can cosmic rays influence cloud formation? Clouds evolve from condensation nuclei which then grow to droplets. Such condensation nuclei are aerosol particles which in principle may also form from ions (electrically charged atoms or molecules). The ions in turn are produced by the cosmic rays from neutral air molecules.

The group around Frank Arnold has studied the formation of aerosol particles from ions by laboratory experiments. They found that the atmospheric ions grow preferably via uptake of gaseous sulfuric acid molecules. After sufficient growth, the ions may become stable but still very small aerosol particles. These may grow further, preferably by uptake of sulfuric acid. As demonstrated by MPIK laboratory measurements, gaseous sulfuric acid is formed in the atmosphere from sulfur dioxide, which stems mostly from fossil fuel combustion and volcanism. However, as revealed by aircraft-borne measurements made by MPIK in close collaboration with DLR (German Aerospace Center), sulfuric acid is formed in the atmosphere only rarely in sufficient amounts to allow the tiny aerosol particles to grow to the size of cloud condensation nuclei. Therefore, the limited supply of sulfur dioxide is a bottleneck of cosmic-ray mediated cloud formation.

So it seemed consequential to calculate the ion concentration in the atmosphere from measured data of the galactic cosmic radiation and to compare it with satellite data of cloud cover. As a result of the analysis of 6 pronounced Forbush events it can be stated, that the temporal changes of ion concentration and cloud cover are totally uncorrelated. For no cloud layer, the researchers of the Swiss-German collaboration could find global or regional effects, neither for a single event nor averaged over all 6 events.

The scientists have only taken into account such Forbush decreases that were undisturbed by other effects. They calculated for all 6 events during each 20 days at every 3 hours the ion concentration in a 5°×5° grid over the globe and the entire troposphere. Then they compared these values with the also 3-hourly available satellite data of the cloud cover in 3 altitude layers. They evaluated only relative values to avoid possible systematic measurement errors to play a role. The method is sufficiently sensitive to detect effects on the scale postulated by the Danish scientists.

Original paper:
Sudden cosmic ray decreases: No change of global cloud cover.
J. Calogovic, C. Albert, F. Arnold, J. Beer, L. Desorgher, E.O. Flückiger;
Geophysical Research Letters, Vol. 37, L03802, doi:10.1029/2009GL041327, 2010
Contact:
Prof. Dr. Frank Arnold
Max-Planck-Institut für Kernphysik
Tel: +49 6221 516467
E-mail: frank.arnold@mpi-hd.mpg.de

Dr. Bernold Feuerstein | Max-Planck-Institut
Further information:
http://www.mpi-hd.mpg.de

More articles from Earth Sciences:

nachricht Turning the Climate Tide by 2020
29.06.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>