Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloud atlas: Texas A&M scientist maps the meaning of mid-level clouds

24.11.2010
Clouds play a major role in the climate-change equation, but they are the least-understood variable in the sky, observes a Texas A&M University geoscientist, who says mid-level clouds are especially understudied. The professor, Shaima Nasiri, is making those "in-between" clouds the focus of her research, which is being funded by NASA.

Mid-level clouds are so understudied, Nasiri says, that scientists have yet to develop a common nomenclature for them. "We do not have a unified definition, so the scientific community can't look at the statistics with a shared level of understanding. Also, because mid-level clouds are formed either from water droplets or ice crystals or a combination of both, they can be more difficult to model.

"Only in the past few years have we focused on the physical properties of mid-level clouds. This means that previous climate models are incomplete," Nasiri says. "All cloud formations are important tracers in the climate-change equation. But we must accurately define and measure the middle layer before we can have a complete picture."

Nasiri credits recent satellite technology for being the vehicle that gives scientists the facts and figures needed to fold the essence of clouds into climate-change formulas.

"NASA satellites launched over the last few years have helped us identify height and base, and temperature and pressure of mid-level clouds. This has revolutionized atmospheric studies," she says. Called the A Train, a formation of six satellites collects and relays an unprecedented amount of atmospheric data, giving scientists such as Nasiri the ability to see all the way through clouds around the globe.

The Texas A&M geoscientist notes the amount of data received from the satellites is so enormous, that part of her work the last two years has been number crunching, developing algorithms just so she and other scientists could process the information.

Sometimes, mid-level clouds can't be seen or identified from the ground. And the high-flying cirrus layer can obscure them from the air. Altostratus and altocumulus are the common mid-level clouds, Nasiri explains. But the line of demarcation between low, mid-level and high clouds is unclear, a problem for scientists because although clouds play a major role they are the least understood variable in climate change studies.

The NASA award of the type presented to Nasiri, assistant professor of atmospheric sciences at Texas A&M, is given to promising young researchers to further their studies in Earth's systems. Her three-year grant is for $324,000. The NASA New Investigator Program award acknowledges scientists and engineers who integrate research and education in Earth system sciences in the beginning stages of their professional careers.

In addition to defining a common language for studying mid-level clouds and assessing their role in climate studies, Nasiri will also use part of the grant to help schoolteachers supplement their curriculum. "I plan to make it easier for high school teachers to use NASA data to engage students in Earth science and climate studies," she says.

"Every school child learns about billowy cumulus and high, thin cirrus clouds, but middle clouds are often ignored. " If you see a cloud that looks like a space ship, it's probably a type of mid-level cloud called lenticular," says Nasiri.

A physics and math major as an undergraduate at the University of Denver, Nasiri completed her graduate work in atmospheric sciences at the University of Wisconsin at Madison. She came to Texas A&M in 2006. She teaches an introduction to meteorology course as well undergraduate and graduate courses in atmospheric physics. She currently manages two additional grants from the Jet Propulsion Laboratory. About research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $582 million, which ranks third nationally for universities without a medical school, and underwrites approximately 3,500 sponsored projects. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Karen Riedel | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>