Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Study Projects Major Changes in Vegetation Distribution by 2100

03.02.2014
As surface warms, distribution of plant species could be affected

Climate researchers have calculated that the spread of plant species in nearly half the world’s land areas could be affected by predicted global warming by the end of the century.

An international research team led by Song Feng, an atmospheric scientist at the University of Arkansas, used a scenario projecting a 3- to 10-degree increase in Celsius temperatures by 2100 to calculate that climate types will change in 46.3 percent of the global land area.

That scenario is referred to by climate scientists, according to Song, as “business as usual” because it assumes that “what we continue to do today we will do in the future, meaning that there will be no significant measures to reduce greenhouse-gas emissions that are warming the planet,” he said.

The scenario has been adopted by the Intergovernmental Panel on Climate Change and calls for moderate to strong warming in the middle and high latitudes of the northern hemisphere and weaker warming in the tropics and the southern hemisphere.

“Climates are associated with certain types of vegetation,” Feng said. “If the surface continues to get warmer, certain native species may no longer grow well in their climate, especially in higher latitudes. They will give their territory to other species. That is the most likely scenario.”

Feng and colleagues in the United States and Asia published their findings in the January issue of the journal Global and Planetary Change, in a study titled “Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations.”

Their study examined shifts in climate regimes around the world using the Köppen-Trewartha climate classification, which is based on the concept that native vegetation is the best expression of climate. The researchers analyzed observations made from 1900 to 2010, and simulations from 1900 to 2100 from 20 global climate models participating in a project of the World Climate Research Programme.

“Changes in precipitation played a slightly more important role in causing shifts of climate type during the 20th century. However, the projected warming plays an increasingly important role and dominates shifts in climate type when the warming becomes more pronounced in the 21st century,” said Feng, an assistant professor of geosciences in the J. William Fulbright College of Arts and Sciences.

“Those vast changes also imply that the global land area is experiencing vegetation-type conversions, with species distributions quite different from those that are familiar to us in modern civilization,” he said.

Feng’s study does not address exact changes to specific species, however. That area requires more research.

“This study is on the broad scale,” he said. “It’s showing the big picture.”

Overall, the models consistently project increasing precipitation over the high latitudes of the northern hemisphere and reduced precipitation in southwestern North America, the Mediterranean, northern and southern Africa and all of Australia, according to the study.

Based on the projected changes in temperature and precipitation, the Köppen-Trewartha climate types would shift toward warmer and drier climate types. Regions of temperate, tropical and dry climate types are projected to expand, while regions of polar, sub-polar and subtropical climate types are projected to contract.

In 2011, Feng’s research team predicted a reorganization of Arctic climates by the end of the 21st century. Their predictions show the tundra in Alaska and Canada giving way to trees, shrubs and plants typical of more southerly climates, as well as other global landscape changes.

The 2011 study was one of the first to apply a specific climate classification system to a comprehensive examination of climate changes throughout the Arctic by using both observations and a collection of projected future climate changes.

The latest results were obtained through a collaborative effort with Qi Hu, Ruopu Li and Zhenghong Tang at the University of Nebraska-Lincoln, Wei Huang at Lanzhou University in China and Chang-Hoi Ho at Seoul National University in South Korea.

CONTACT:
Song Feng, assistant professor, geosciences
J. William Fulbright College of Arts and Sciences
479-575-4748, songfeng@uark.edu

Chris Branam | Newswise
Further information:
http://www.uark.edu

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>