Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate study finds human fingerprint in Northern Hemisphere greening


A multinational team led by the Department of Energy's Oak Ridge National Laboratory Climate Change Science Institute has found the first positive correlation between human activity and enhanced vegetation growth.

The research team, led by Jiafu Mao of the Ecosystem Simulation Science group in the Environmental Sciences Division, used new environmental data and strict statistical methods to discover a significant human-vegetation interaction in the northern extratropical latitudes, the section of the planet spanning 30 to 75 degrees north, roughly between the Tropic of Cancer and the North Frigid Zone above the Arctic Circle.

Earth system models simulate Northern Hemisphere greening. Figure shows the spatial distribution of leaf area index trends (m2/m2/30yr) in the growing season (April-October) during the period of 1982-2011 in the mean of satellite observations (top), Earth system model (ESM) simulations with natural forcings alone (lower left) and ESM simulations with combined anthropogenic and natural forcings (lower right).

Credit: ORNL

"This is the first clear evidence of a discernible human fingerprint on physiological vegetation changes at the continental scale," Mao said.

With the absence of long-term observational records and suitable Earth system model (ESM) simulations, the human "touch" on northern latitude greening had not been previously identified. The team used two recently available 30-year-long leaf area index data sets, 19 ESM simulations and a formal "detection and attribution" statistical algorithm to positively attribute changes in vegetation activity in the extratropical Northern Hemisphere to anthropogenic forcings, or human-induced climate inputs such as well-mixed greenhouse gas emissions.

Leaf area index -- the ratio of leaf surface area to ground area -- is an indicator of vegetation growth and productivity derived from satellite imaging. The remote-sensing-based LAI datasets and ESM simulations showed a significant "greening" trend over the northern extratropical latitudes vegetated area between 1982 and 2011, indicating increased vegetative productivity.

When Mao and his colleagues accounted for internal climate variability and responses to natural forcings such as volcanic eruptions and incoming solar radiation, it was clear that the greening was inconsistent with simulations of purely natural factors and could only be explained by anthropogenic greenhouse gas forcings, particularly elevated carbon dioxide concentrations.

This anthropogenic greening effect has the potential to alter natural processes on a planetary scale. Continent-wide changes in vegetative productivity, such as those in the study, impact energy exchanges, water use and carbon budgets, accelerating or slowing the pace of climate change.

Accurate detection and attribution of changes in vegetation growth patterns are essential for strategic decision-making in ecosystem management, agricultural applications and sustainable development and conservation. This is the first time the detection and attribution algorithm has been applied to terrestrial ecosystem changes such as leaf area index trends, as it is typically used to study physical climate data such as extreme events and variations in temperature or precipitation.

Mao would like to see these long-term regional- and global-scale observational data sets used in similar studies as they become available. He says the detection and attribution algorithm could be applied to study broad-scale terrestrial ecosystem dynamics, and the framework developed for this study could be used to identify and correct potential errors in next-generation ESM simulations.


The study and its results are reported in the article "Human-induced greening of the northern extratropical land surface" in Nature Climate Change. Other ORNL participants and coauthors were Xiaoying Shi, Peter Thornton, Dan Ricciuto and Forrest Hoffman.

This study was supported by the DOE Office of Science.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE's Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit


Caption: Earth system models simulate Northern Hemisphere greening. Figure shows the spatial distribution of leaf area index trends (m2/m2/30yr) in the growing season (April-October) during the period of 1982-2011 in the mean of satellite observations (top), Earth system model (ESM) simulations with natural forcings alone (lower left) and ESM simulations with combined anthropogenic and natural forcings (lower right).

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at Additional information about ORNL is available at the sites below:
Twitter -
RSS Feeds -
Flickr -
YouTube -
LinkedIn -
Facebook -

Sean Simoneau | EurekAlert!

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>