Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate secrets locked at the bottom of the Mariana Trench

27.01.2011
The deepest part of the ocean traps amounts of carbon. An international team of marine scientists got surprising data from the deepest part of the oceans affecting the world’s climate.

For the first time scientists from the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), the Scottish Association for Marine Science (SAMS), the University of Southern Denmark, the University of Copenhagen (Denmark), the HGF-MPG Joint Research Group on Deep-Sea Ecology and Technology from the Max Planck Institute for Marine Microbiology (MPI Bremen, Germany), and the Alfred Wegener Institute for Polar and Marine Research (AWI Bremerhaven, Germany) successfully collected data directly at the bottom of the Mariana Trench located 2000 km East of the Philippines, in a depth of 11000 meters.

A sophisticated deep-diving autonomous lander has carried out a series of descents to the seafloor of the Challenger Deep, a canyon 10.9 km beneath the ocean surface. Here it performed detailed investigations of microbial processes occurring in the sediment. Such detailed science has never been carried out at these extreme depths. The work was carried out during an expedition with the Japanese research vessel Yokosuka (Cruise YK 10-16), with Prof. Hiroshi Kitazato (JAMSTEC) acting as cruise leader.

To better understand the global carbon cycle it is critical to know what role the oceans play in carbon sequestration. Deep ocean trenches make up only 2% of the seafloor but may be disproportionately important as a trap for carbon. The aim of this research was to measure the rate by which organic carbon is degraded at these extreme depths and to estimate from collected sediment samples how much organic carbon is retained in the trenches. The fraction of carbon retained versus degraded in the seabed is crucial to understand the marine carbon cycle and hence the climate of our planet.

The pressure at these great depths is extreme, so to investigate microbial processes in samples from such depths can be very difficult – bringing the organisms to the surface can radically affect them. Therefore scientists around Prof. R.N. Glud (SAMS and SDU) and Dr. F. Wenzhöfer (MPI and AWI) developed an instrument capable of performing the measurements directly on the seafloor at this great depth. Specially constructed sensors probed the sediment in small grids and mapped out the distribution of oxygen in the seabed, providing key insight into the rate at which organic carbon is degraded. To get the “robot” to operate at 10.9km depth was a great challenge. Equipment designed by the team was specially engineered for the mission to function at pressures in excess of 1000 atmospheres. The deployed deep-sea system was a joint effort of Japanese, Scottish, Danish and German scientists. During the cruise the scientist succeeded in performing detailed mapping of microbial activity using highly sophisticated, movable instrumentation and microsensor arrays.

Preliminary data from the measurements came as a surprise, as they reveal that the turnover of carbon is much greater at the bottom of the Trench than on the Abyssal plain (6000 metres down). This demonstrates that the seabed in the trenches acts as a trap for organic material and may therefore have high rates of carbon retention. Analyses will be carried out on recovered samples by the research team and they will reveal the rate at which sediment is accumulating at the bottom of the trench. The expedition is a good example of international teamwork. There was a great sense of achievement to study and bring back data from the deepest part of the ocean. Now the researchers expect that this information will help to answer some very important questions regarding carbon mineralisation and sequestration in the ocean trenches.

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:
http://www.mpi-bremen.de

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>