Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate risks of bioenergy underestimated

08.03.2012
Energy from biomass presents underappreciated risks, new research published in Nature Climate Change shows.

“A precautionary approach is needed,” says Ottmar Edenhofer, chief economist of the Potsdam Institute for Climate Impact Research (PIK) and professor at the Technische Universität Berlin (TU Berlin).

“Before further expanding bioenergy, science has to deliver a more comprehensive risk assessment to policy makers – dealing with the uncertainties inherent to projections of bioenergy use up to now. Novel kinds of risk management for land-use change are needed.” One option would be to shift the burden-of-proof of meeting sustainability standards to the bioenergy producers.

Large-scale cultivation of bioenergy crops could lead to increased net greenhouse-gas emissions when, for instance, forests are cleared for agricultural use. At the same time, long-term scenarios suggest that replacing fossil fuels to achieve low CO2 stabilisation might require major deployment of bioenergy. The article provides a framework for reconciling these two seemingly disparate views and identifies key uncertainties underlying the debate.

„Bioenergy is a matter of heated debate,“ says Felix Creutzig, lead author of the article by scientists from TU Berlin, PIK, and the University of California in Berkeley. „Scientists need to be very clear about the assumptions that their analyses rest upon and the effect alternative assumptions may have on their conclusions when they aim to systematically explore the risks associated with alternative policy options. Policy makers may choose to only allow further bioenergy deployment under very restricted circumstances.“

The net effect on climate of increasing production of bioenergy is highly uncertain. While current analyses are mostly good at accounting for historical emissions in the production of energy from biomass, according to the study the effects of future large-scale deployment of biofuels on agricultural and transportation fuel markets are often ignored. For instance, increased biofuels feedstock production on agricultural land might drive global food prices up. This provides significant incentives to expand agricultural area at the expense of natural carbon sinks.

In contrast, many economic climate change mitigation scenarios treat bioenergy as “carbon neutral” by assuming the implementation of policies to prevent deforestation and that technological progress will enable increased bioenergy yields per hectare. Whether these assumptions will prove correct is difficult to predict, and differing beliefs about such assumptions cause estimates of bioenergy potential to vary substantially – that is, by a factor of ten.

Comprehensive assessments of the climate benefits of bioenergy should try to explore the full range of possible outcomes and systematically integrate market effects, the researchers conclude. This also includes more systematic assessments of the climate performance of bioenergy in imperfect worlds with, for example, limited technological progress or policies. Progress in this debate will require much greater interdisciplinary collaboration and coordination among researchers across the numerous scientific communities touched by bioenergy.

„This is one key challenge for upcoming scientific assessments,” Edenhofer points out. “Projections of bioenergy use partially depend on value judgements – concerning energy security, climate change mitigation, food security, and biodiversity protection.“ When science succeeds in communicating all underlying assumptions and uncertainties to policy-makers, says Edenhofer, „then that can be a starting point for the important discussion on where we as a society want to go and which risks we are willing to take.”

The analysis has been supported by the Michael Otto Stiftung and the German Federal Ministry of Education and Research.

Article: Creutzig, F., Popp, A., Plevin, R., Luderer, G., Minx, J., Edenhofer, O. (Nature Climate Change, 2012): Reconciling top-down and bottom-up modelling on future bioenergy deployment [doi:10.1038/nclimate1416]
Weblink to article: http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate1416.html

For further information please contact:

PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de

TU Berlin press office
Phone: 030 314 23 922
E-Mail: pressestelle@tu-berlin.de

Mareike Schodder | PIK Potsdam
Further information:
http://www.pik-potsdam.de
http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate1416.html

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>