Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Modelers See Warmer, Wetter Northeast Winters

14.12.2012
Winter contracting, snow season expected to be shorter

A new high-resolution climate study by University of Massachusetts Amherst climate scientists, the first to apply regional climate models to examine likely near-term changes in temperature and precipitation across the Northeast United States, suggests temperatures are going to be significantly warmer in all seasons in the next 30 years, especially in winter. Also, they project that winters will be wetter, with more rain likely than snow.

Writing in the current issue of the Journal of Geophysical Research, Michael Rawlins and Raymond Bradley of the Climate System Research Center at UMass Amherst, with Henry Diaz of the National Oceanic and Atmospheric Administration’s (NOAA) Climate Diagnostics Center, Boulder, Colo., provide the highest resolution climate projections to date for the Northeast from Pennsylvania to Maine for the period 2041 to 2070. The study used data from multiple climate model simulations run at greatly improved resolution.

Rawlins says, “One of the most important aspects of our study is that we can now examine in more detail what’s likely to occur across the region with a grid size of approximately 31 x 31 miles (50 x 50 km). Previous studies used much more coarse-scale general circulation model data. This represents a significant step forward.”

Bradley adds, “Regional climate models have been around for a while, but they have not been applied specifically to the Northeast region. At this point what we can provide are ‘broad brush’ estimates of how things will change over the next 30 to 50 years. People should not over-interpret these results. Further research is needed to scale these down to individual locations. But for natural resource conservation managers, water resource managers and others responsible for planning ahead, we expect our region-specific results will be helpful.”

Overall, the researchers say the region is projected to warm by some 2 to 3 degrees Celsius by mid-century, with local changes approaching 3.5 degrees C in winter. Precipitation will go up as well, particularly in winter, but again not uniformly across the Northeast. The UMass Amherst climate scientists say confidence in the precipitation change projections for spring, summer and autumn is lower, given smaller changes relative to natural weather variability.

“The only clear signal of change for precipitation is noted in winter, which appears to be heading toward wetter conditions, consistent with current trends,” Rawlins says. Winter precipitation is projected to rise significantly above natural weather variability, around 12 to 15 percent greater from southwest Pennsylvania to northern Maine, with the exception of coastal areas, where projected increases are lower.

“But we shouldn’t expect more total seasonal snowfall,” he adds. “Combined with the model-projected temperature trends, much of the increase will occur as rain. We’re losing the snow season. It is contracting, with more rain in early and late winter.”

For this study funded by NOAA, Rawlins and Bradley used available outputs from an ensemble of regional climate models (RCM) from the North American Regional Climate Change Assessment Program to look at potential changes in seasonal air temperature and precipitation between the present (1971 to 2000), and a future period (2041 to 2070) across the Northeast. They performed a rigorous evaluation of each model’s ability to represent current climate by comparing its outputs to actual weather station data.

The projections assume that greenhouse gas emissions will continue to rise, increasing atmospheric CO2 from about 400 parts per million (ppm) today to between 500 and 600 ppm in 2070. Bradley and Rawlins acknowledge that this outlook represents the “most aggressive, most troubling higher emissions trajectory scenario” for CO2 levels, but they point out that so far there is little evidence that society will act to appreciably change the current rate of increase.

Each of the five RCMs were forced with data from two general circulation models (GCM), yielding nine GCM-RCM simulations. This provided a rich suite of data for climate change analysis, the scientists say. GCM forcings are applied at the boundaries of the North American region, with RCMs then taking over, resulting in much higher-resolution depictions of precipitation and air temperature than would have been possible using the GCMs alone.

Results show statistically significant increases in air temperature region-wide for every grid in each season, but the changes are not uniform. For example, the models collectively project air temperature changes in winter of more than 3 degrees C (5.5 degrees F) across northern Maine, all of New Hampshire, Vermont and the Adirondacks, representing about 50 percent of the Northeast region. In some local areas, the increase could be near 4 degrees C (7.2 degrees F).

By contrast, winter air temperature increases in southwest Pennsylvania are projected to be lower, only about 2.4 degrees C. In summer, the pattern is reversed and the southwest quadrant of the northeast is projected to be warmer and the changes higher.

Abstract available: http://www.agu.org/pubs/crossref/2012/2012JD018137.shtml

Michael Rawlins | EurekAlert!
Further information:
http://www.geo.umass.edu
http://www.agu.org

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>