Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Effects of Atmospheric Haze a Little Less Hazy

09.09.2009
Scientists have used a new approach to sharpen the understanding of one of the most uncertain of mankind's influences on climate: the effects of aerosols (or atmospheric "haze"), the tiny airborne particles from pollution, biomass burning, and other sources.

The new observations-based study confirms that aerosols have the net effect of cooling the planet-in agreement with previous understanding -- but arrives at the answer in a completely new way that is more straightforward and narrows the uncertainties of the estimate.

The researchers, led by Daniel M. Murphy of the National Oceanic and Atmospheric Administration's (NOAA) Earth System Research Laboratory in Boulder, Colo., applied fundamental conservation of energy principles to construct a global energy "budget." This budget tallies the climate's "credits" and "debits"--heating and cooling processes-- since 1950, using only observations and straightforward calculations without the more complicated algorithms of global climate models. The authors then calculated the cooling effect of the aerosols as the only missing term in the budget, arriving at an estimate of 1.1 watts per square meter.

The teams' findings are published today in Journal of Geophysical Research- Atmospheres, a journal of the American Geophysical Union (AGU).

The results support the 2007 assessment by the Intergovernmental Panel on Climate Change

(IPCC) that estimated aerosol cooling at 1.2 watts per square meter. But the new study places that estimate on more solid ground and rules out the larger cooling effects that were previously thought to be possible.

"The agreement boosts our confidence in both the models and the new approach," Murphy says. "Plus, we've been able to pin down the amount of cooling by aerosols better than ever."

The narrower bounds on aerosol effects will help in predicting climate change and accounting for climate change to date.

In balancing the budget for the processes perturbing the heating and cooling of the Earth, Murphy and colleagues found that since 1950, the planet released about 20 percent of the warming influence of heat-trapping greenhouse gases to outer space as infrared energy.

Volcanic emissions lingering in the stratosphere offset about 20 percent of the heating by bouncing solar radiation back to space before it reached the surface. Cooling from the lower- atmosphere aerosols produced by humans balanced 50 percent of the heating. Only the remaining 10 percent of greenhouse-gas warming actually went into heating the Earth, and almost all of it went into the ocean.

The new study tackled what the IPCC has identified as one of the most uncertain aspects of the human impacts on climate. Aerosols have complex effects on climate; sulfate particles formed from pollution can cool the Earth directly by reflecting sunlight, while soot from biomass burning absorbs sunlight and warms the Earth. Aerosols can also affect the formation and properties of clouds, altering their influence on climate. The net effect of all these direct and indirect factors is a cooling by aerosols, which has partially offset the warming by greenhouse gases.

Maria-Jose Vinas | American Geophysical Union
Further information:
http://dx.doi.org/10.1029/2009JD012105
http://www.noaa.gov
http://www.agu.org

More articles from Earth Sciences:

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Sea level as a metronome of Earth's history
19.05.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>