Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Effects of Atmospheric Haze a Little Less Hazy

09.09.2009
Scientists have used a new approach to sharpen the understanding of one of the most uncertain of mankind's influences on climate: the effects of aerosols (or atmospheric "haze"), the tiny airborne particles from pollution, biomass burning, and other sources.

The new observations-based study confirms that aerosols have the net effect of cooling the planet-in agreement with previous understanding -- but arrives at the answer in a completely new way that is more straightforward and narrows the uncertainties of the estimate.

The researchers, led by Daniel M. Murphy of the National Oceanic and Atmospheric Administration's (NOAA) Earth System Research Laboratory in Boulder, Colo., applied fundamental conservation of energy principles to construct a global energy "budget." This budget tallies the climate's "credits" and "debits"--heating and cooling processes-- since 1950, using only observations and straightforward calculations without the more complicated algorithms of global climate models. The authors then calculated the cooling effect of the aerosols as the only missing term in the budget, arriving at an estimate of 1.1 watts per square meter.

The teams' findings are published today in Journal of Geophysical Research- Atmospheres, a journal of the American Geophysical Union (AGU).

The results support the 2007 assessment by the Intergovernmental Panel on Climate Change

(IPCC) that estimated aerosol cooling at 1.2 watts per square meter. But the new study places that estimate on more solid ground and rules out the larger cooling effects that were previously thought to be possible.

"The agreement boosts our confidence in both the models and the new approach," Murphy says. "Plus, we've been able to pin down the amount of cooling by aerosols better than ever."

The narrower bounds on aerosol effects will help in predicting climate change and accounting for climate change to date.

In balancing the budget for the processes perturbing the heating and cooling of the Earth, Murphy and colleagues found that since 1950, the planet released about 20 percent of the warming influence of heat-trapping greenhouse gases to outer space as infrared energy.

Volcanic emissions lingering in the stratosphere offset about 20 percent of the heating by bouncing solar radiation back to space before it reached the surface. Cooling from the lower- atmosphere aerosols produced by humans balanced 50 percent of the heating. Only the remaining 10 percent of greenhouse-gas warming actually went into heating the Earth, and almost all of it went into the ocean.

The new study tackled what the IPCC has identified as one of the most uncertain aspects of the human impacts on climate. Aerosols have complex effects on climate; sulfate particles formed from pollution can cool the Earth directly by reflecting sunlight, while soot from biomass burning absorbs sunlight and warms the Earth. Aerosols can also affect the formation and properties of clouds, altering their influence on climate. The net effect of all these direct and indirect factors is a cooling by aerosols, which has partially offset the warming by greenhouse gases.

Maria-Jose Vinas | American Geophysical Union
Further information:
http://dx.doi.org/10.1029/2009JD012105
http://www.noaa.gov
http://www.agu.org

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>