Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change will increase the accumulation of DDT in the Arctic

13.03.2015

Max Planck scientists show how persistent pollutants will accumulate in the Arctic in the future.

Many organic pollutants that originate from industrial and technical processes, are persistent and are not degraded in the environment. This poses a hazard for the environment and life even in remote regions of the world. These pollutants include the insecticide dichlorodiphenyltrichloroethane and the polychlorinated biphenyls - better known by their abbreviations, DDT or PCB.


Iceberg in North-East Greenland.

Martha de Jong-Lantink, Flickr, Creative Commons

These molecules are semi-volatile. This means that at room temperature they are mainly gaseous, however, under low temperatures they condense, and later on may re-evaporate. Therefore, the way these pollutants spread in the environment largely depends on meteorological factors such as wind, temperature and precipitation. These substances mainly arrive in the Arctic via air currents. There they remain particularly persistent.

Scientists from the Max Planck Institute for Chemistry and the Universities of Hamburg and Cambridge have now investigated which impact climate changes. have on the circulation of these substances in the Arctic. There, climate changes particularly rapidly. The research group headed by Gerhard Lammel from the Institute in Mainz chose three persistent substances that globally had been produced in large quantities: DDT, PCB 153 and PCB 28.

In the 1970s, DDT was the most widely used insecticide, however, it was later banned in most countries in the world due to its hormone-like effect on many biota. PCBs were frequently used as plasticizers in plastics and as insulation material, for example in transformers. As they are carcinogenic, they were banned in the 1980s. All three molecules are easily soluble in fat and therefore accumulate in human and animal tissue.

The researchers simulated the Arctic flow conditions with the aid of a coupled atmosphere-ocean-model. Based on the distribution of emissions since the start of industrial production around 1950, and the assumption of future expected residual emissions as well as the future climate, the model calculated which pollutants will flow over the Arctic Circle at the end of this century.

The findings surprised the researchers: Measurements have shown that since the peak pollutant emissions in the last century, less and less DDT and PCP molecules are arriving in the Arctic. However, the forecasts predict that this trend will reverse for DDT around the year 2075 and more DDT will arrive in the Arctic.

This effect will be amplified by climate change. PCBs on the other hand, will not see an increased northward flow across the Arctic Circle, however, the decline rate will level off. Substances do behave differently, because their involvement in processes of cycling in the environment, across, ice, soils, water and air, differs.

The model runs provided another important result. Scientists can now explain why the concentration of persistent pollutants in the atmosphere above Svalbard correlates with the so-called Arctic Oscillation, whereas this is not the case above Greenland. The Arctic Oscillation is a regular oscillation of the atmosphere above the Arctic that creates differences in atmospheric pressure.

It occurs as a result of large temperature differences between the polar region and the temperate mid-latitudes. Pollutant flows from Europe, which correlate positively with the Arctic Oscillation, maintain the concentrations above Svalbard. The pollutant concentrations above Greenland, however, are determined by flows in the Canadian Archipelago, where air currents are in a reverse relation with this oscillation.

In future studies, researchers will investigate other substances’ large-scale distribution, including endosulfan. Endosulfan is an insecticide which replaced DDT in the 1970s, although it is slowly degrading and problematic for the environment, too. It´s use was only restricted in 2013. (SB)

Original publication:
Mega Octaviani, Irene Stemmler, Gerhard Lammel, and Hans F. Graf, Atmospheric Transport of Persistent Organic Pollutants to and from the Arctic under Present-Day and Future Climate, Environmental Science and Technology, DOI: 10.1021/es505636g, 2015

Contact:
Prof. Dr. Gerhard Lammel
Max Planck Institute for Chemistry
Telephone: +49 (0) 6131-3054055
E-mail g.lammel@mpic.de

Dr. Susanne Benner | Max-Planck-Institut für Chemie
Further information:
http://www.mpic.de/

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>